×

A multiresolution algorithm to approximate the Hutchinson measure for IFS and GIFS. (English) Zbl 1453.28005

Summary: We introduce a discrete version of the Hutchinson-Barnsley theory providing algorithms to approximate the Hutchinson measure for iterated function systems (IFS) and generalized iterated function systems (GIFS), complementing the discrete version of the deterministic algorithm considered in our previous work.

MSC:

28A80 Fractals
37C70 Attractors and repellers of smooth dynamical systems and their topological structure
41A65 Abstract approximation theory (approximation in normed linear spaces and other abstract spaces)
65S05 Graphical methods in numerical analysis

Software:

GIFSMeasureDraw
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Barnsley, M. F., Fractals everywhere (1988), Academic Press, Inc.: Academic Press, Inc. Boston, MA · Zbl 0691.58001
[2] Barnsley, M. F.; Demko, S. G.; Elton, J. H.; Geronimo, J. S., Invariant measures for markov processes arising from iterated function systems with place-dependent probabilities, Ann Inst H Poincaré Probab Stat, 24, 3, 367-394 (1988) · Zbl 0653.60057
[3] Blank, M., Perron-frobenius spectrum for random maps and its approximation, Moscow Math J, 1, 3, 315-344 (2001) · Zbl 0996.37005
[4] Bogachev, V., Measure Theory (2007), Springer, Springer-Verlag: Springer, Springer-Verlag Berlin · Zbl 1120.28001
[5] Berinde, V.; Pacurar, M., The role of the Pompeiou-Hausdorff metric in fixed point theory, Creative Math Inform, 22, 13, 143-150 (2013) · Zbl 1313.47114
[6] Cipriano I., Jurga N.. Approximating integrals with respect to stationary probability measures of iterated function systems. 2019. Preprint https://arxiv.org/abs/1907.03872.
[7] Conze, J. P.; Raugi, A., Fonctions harmoniques pour un opérateur de transition et applications, Bull Societé Mathematique de France, 118, 3, 210-273 (1990) · Zbl 0725.60026
[8] Cunha R.D.d., Oliveira E.R., Strobin F.. A multiresolution algorithm to generate images of generalized fuzzy fractal attractors. 2020. 10.1007/s11075-020-00886-w
[9] Elton, E. J., An ergodic theorem for iterated maps, Ergodic Theory Dyn Syst, 7, 4, 481-488 (1987) · Zbl 0621.60039
[10] January · Zbl 0989.37049
[11] Georgescu, F.; Miculescu, R.; Mihail, A., Invariant measures of markov operators associated to iterated function systems consisting of ϕ-max-contractions with probabilities, Indagationes Mathematicae, 30, 1, 214-226 (2019) · Zbl 1405.28008
[12] May · Zbl 1342.82060
[13] Galatolo, S.; Nisoli, I., An elementary approach to rigorous approximation of invariant measures, SIAM J Appl Dyn Syst, 13, 2, 958-985 (2014) · Zbl 1348.37118
[14] Hutchinson, J., Fractals and self-similarity, Indiana Univ Math J, 30, 5, 713-747 (1981) · Zbl 0598.28011
[15] October · Zbl 1366.37026
[16] April · Zbl 1166.65011
[17] Kunze, H.; La Torre, D.; Mendivil, F.; Vrscay, E. R., Fractal-based methods in analysis (2012), Springer: Springer Springer US · Zbl 1237.28002
[18] April · Zbl 1298.28019
[19] Mihail, A., Recurrent iterated function systems, Revue Roumaine de Mathématiques Pures et Appliqués, 53, 1, 43-53 (2008) · Zbl 1212.28024
[20] Mihail, A., The hutchinson measure for generalized iterated function systems, Revue Roumaine de Mathématiques Pures et Appliqués, 54, 4, 297-316 (2009) · Zbl 1199.28029
[21] May · Zbl 1201.54037
[22] July · Zbl 1180.28006
[23] January · Zbl 1197.54067
[24] April · Zbl 07191900
[25] March · Zbl 1414.28021
[26] January · Zbl 1079.37003
[27] 02 · Zbl 1136.60005
[28] May · Zbl 1372.37013
[29] Strobin, F.; Swaczyna, J., On a certain generalisation of the iterated function system, Bull Aust Math Soc, 87, 1, 37-54 (2013) · Zbl 1282.54022
[30] Stenflo, O., Uniqueness of invariant measures for place-dependent random iterations of functions, volume 132 of, (Barnsley, M. F.; Saupe, D.; Vrscay, E. R., Fractals in multimedia. The IMA volumes in mathematics and its application (2002), Springer: Springer New York), 13-32 · Zbl 1053.28004
[31] February · Zbl 1359.37030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.