×

zbMATH — the first resource for mathematics

Variation in caesarean delivery rates across hospitals: a Bayesian semi-parametric approach. (English) Zbl 07282141
Summary: This article presents a Bayesian semi-parametric approach for modeling the occurrence of cesarean sections using a sample of women delivering in 20 hospitals of Sardinia (Italy). A multilevel logistic regression has been fitted on the data using a Dirichlet process prior for modeling the random-effects distribution of the unobserved factors at the hospital level. Using the estimated random effects at the hospital level, a partition of the hospitals in terms of similar medical practice has been obtained that identifies different profiles of hospitals in terms of caesarean section risks. The limited number of clusters may be useful for suggesting policy implications that help to reduce the heterogeneity of caesarean delivery risks.
MSC:
62G08 Nonparametric regression and quantile regression
Software:
R; R2WinBUGS
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] M. Berger and G. Tutz, Tree-structured clustering in fixed effects models, preprint (2015). Available at arXiv:1512.05169.
[2] F. Bragg, D.A. Cromwell, L. Edozien, I. Gurol-Urganci, T.A. Mahmood, A. Templeton, and J. van der Meulen, Variation in rates of caesarean section among English NHS trusts after accounting for maternal and clinical risk: Cross sectional study, BMJ 341 (2010), p. c5065.doi:doi: 10.1136/bmj.c5065.
[3] I.A. Caceres, M. Arcaya, E. Declercq, C.M. Belanoff, V. Janakiraman, B. Cohen, J. Ecker, L.A. Smith, and S.V. Subramanian, Hospital differences in cesarean deliveries in Massachusetts (US) 2004-2006: The case against case-mix artifact, PLoS ONE 8 (2013), p. e57817. doi: 10.1371/journal.pone.0057817
[4] M. Cannas and E. Sironi, Hospital differences in rates of cesarean deliveries in the Sardinian region: An observational study, Epidemiol. Biostat. Public Health 11 (2014). http://dx.doi.org/10.2427/10267.
[5] D.B. Dahl, Model-based clustering for expression data via a Dirichlet process mixture model, in Bayesian Inference for Gene Expression and Proteomics, K.-A. Do, P. Müller, and M. Vannucci, eds., Cambridge University Press, New York, 2006.
[6] D.B. Dahl, Modal clustering in a class of product partition models, Bayesian Anal. 4 (2009), pp. 243-264. doi: 10.1214/09-BA409 · Zbl 1330.62248
[7] C. Duncan, K. Jones, and G. Moon, Context, composition and heterogeneity: Using multilevel models in health research, Soc. Sci. Med. 46 (1998), pp. 97-117. doi: 10.1016/S0277-9536(97)00148-2
[8] D. Dunson, Nonparametric Bayes applications to biostatistics, Tech. Rep., Biostatistics Branch, National Institute of Environmental Health Sciences, U.S. National, Institute of Health, USA, 2008.
[9] EURO-PERISTAT Project with SCPE and EUROCAT, European perinatal health report. The health and care of pregnant women and babies in Europe in 2010, 2013.
[10] T.S. Ferguson, A Bayesian analysis of some nonparametric problems, Ann. Statist. 1 (1973), pp. 209-230. doi: 10.1214/aos/1176342360 · Zbl 0255.62037
[11] A. Fritsch and K. Ickstadt, Improved criteria for clustering based on the posterior similarity matrix, Bayesian Anal. 4 (2009), pp. 367-391. doi: 10.1214/09-BA414 · Zbl 1330.62249
[12] A. Guglielmi, F. Ieva, A.M. Paganoni, F. Ruggeri, and J. Soriano, Semiparametric Bayesian models for clustering and classification in the presence of unbalanced in-hospital survival, JRSS C Appl. Statist. 63 (2014), pp. 25-46.
[13] L. Hubert and P. Arabie, Comparing partitions, J. Classification 2 (1985), pp. 193-218. doi: 10.1007/BF01908075
[14] K.P. Kleinman and J.G. Ibrahim, A semi-parametric Bayesian approach to generalized linear mixed models, Stat. Med. 17 (1998), pp. 2579-2596. doi: 10.1002/(SICI)1097-0258(19981130)17:22<2579::AID-SIM948>3.0.CO;2-P
[15] K.B. Kozhimannil, M.R. Law, and B.A. Virnig, Cesarean delivery rates vary tenfold among US hospitals: Reducing variation may address quality and cost issues, Health Aff. 32 (2013), pp. 527-535. doi: 10.1377/hlthaff.2012.1030
[16] H. Ishwaran and M. Zarepour, Exact and approximate sum representations for the Dirichlet process, Canad. J. Statist. 30 (2002), pp. 269-283. doi: 10.2307/3315951 · Zbl 1035.60048
[17] J.W. Lau and P.J. Green, Bayesian model-based clustering procedures, J. Comput. Graph. Statist. 16 (2007), pp. 526-558. doi: 10.1198/106186007X238855
[18] Y.Y. Lee, C.L. Roberts, J.A. Patterson, J.M. Simpson, M.C. Nicholl, J.M. Morris, and J.B. Ford, Unexplained variation in hospital caesarean section rates, Med. J. Aust. 199 (2013), pp. 348-353. doi: 10.5694/mja13.10279
[19] J.S. Liu, Nonparametric hierarchical Bayes via sequential imputations, Ann. Statist. 24 (1996), pp. 911-930. doi: 10.1214/aos/1032526949 · Zbl 0880.62038
[20] S.N. MacEachern, Dependent nonparametric processes, ASA Proceedings of the Section on Bayesian Statistical Science, American Statistical Association, Alexandria, VA, 1999, pp. 278-279.
[21] M. Medvedovic, K.Y. Yeung, and R.E. Bumgarner, Bayesian mixture model based clustering of replicated microarray data, Bioinformatics 20 (2004), pp. 1222-1232. doi: 10.1093/bioinformatics/bth068
[22] J. Pitman and M. Yor, The two-parameter Poisson Dirichlet distribution derived from a stable subordinator, Ann. Probab. 25 (1997), pp. 855-900. doi: 10.1214/aop/1024404422 · Zbl 0880.60076
[23] R Development Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. Available at http://www.R-project.org 385. ISBN 3-900051-07-0.
[24] C.L. Roberts and T.A. Nippita, International caesarean section rates: The rising tide, Lancet Glob. Health 3 (2015), pp. e241-e242. doi: 10.1016/S2214-109X(15)70111-7
[25] J. Sethuraman, A constructive definition of Dirichlet priors, Statist. Sinica 4 (1994), pp. 639-650. · Zbl 0823.62007
[26] S. Sturtz, U. Ligges, and A. Gelman, R2WinBUGS: A package for running WinBUGS from R, J. Statist. Softw. 12 (2005), pp. 1-16. doi: 10.18637/jss.v012.i03
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.