×

zbMATH — the first resource for mathematics

Classification rules for identifying individuals at high risk of developing myocardial infarction based on ApoB, ApoA1 and the ratio were determined using a Bayesian approach. (English) Zbl 07282424
Summary: We have developed a new approach to determine the threshold of a biomarker that maximizes the classification accuracy of a disease. We consider a Bayesian estimation procedure for this purpose and illustrate the method using a real data set. In particular, we determine the threshold for Apolipoprotein B (ApoB), Apolipoprotein A1 (ApoA1) and the ratio for the classification of myocardial infarction (MI). We first conduct a literature review and construct prior distributions. We then develop classification rules based on the posterior distribution of the location and scale parameters for these biomarkers. We identify the threshold for ApoB and ApoA1, and the ratio as 0.908 (gram/liter), 1.138 (gram/liter) and 0.808, respectively. We also observe that the threshold for disease classification varies substantially across different age and ethnic groups. Next, we identify the most informative predictor for MI among the three biomarkers. Based on this analysis, ApoA1 appeared to be a stronger predictor than ApoB for MI classification. Given that we have used this data set for illustration only, the results will require further investigation for use in clinical applications. However, the approach developed in this article can be used to determine the threshold of any continuous biomarker for a binary disease classification.
MSC:
62 Statistics
Software:
aplore3; boa; R; R2WinBUGS; WinBUGS
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] H. Akaike, A new look at the statistical model identification, IEEE Trans. Automat. Control 19 (1974), pp. 716-723. doi: 10.1109/TAC.1974.1100705 · Zbl 0314.62039
[2] S.P.B. Brooks and A.G. Gelman, General methods for monitoring convergence of iterative simulations, J. Comput. Graph. Statist. 7 (1998), pp. 434-455.
[3] A. Gelman and D.B. Rubin, Inference from iterative simulation using multiple sequences, Statist. Sci. 7 (1992), pp. 457-511. doi: 10.1214/ss/1177011136 · Zbl 1386.65060
[4] J. Geweke, Evaluating the accuracy of sampling-based approaches to calculating posterior moments, in Bayesian Statistics (Vol. 4), J.M. Bernado, J.O. Berger, A.P. David, and A.F.M. Smith, eds., Oxford University Press, Oxford, 1992, pp. 1-31.
[5] P. Heidelberger and P.D. Welch, Simulation run length control in the presence of an initial transient, Oper. Res. 31 (1983), pp. 1109-1144. doi: 10.1287/opre.31.6.1109 · Zbl 0532.65097
[6] I. Holme, A.H. Aastveit, I. Jungner, and G. Walldius, Relationships between lipoprotein components and risk of myocardial infarction: age, gender and short versus longer follow-up periods in the Apolipoprotein MOrtality RISk study (AMORIS), J. Intern. Med. 264 (2008), pp. 30-38. Available at http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2796.2008.02016.x/epdf. doi: 10.1111/j.1365-2796.2008.01925.x
[7] D.W. Hosmer, S. Lemeshow, and R.X. Sturdivant, Applied Logistic Regression, 3rd ed., Wiley-Interscience, New York, 2013. Available at http://ca.wiley.com/WileyCDA/WileyTitle/productCd-0470582472.html. · Zbl 1276.62050
[8] L. Lind, B. Vessby, and J. Sundstro, The apolipoprotein B / AI ratio and the metabolic syndrome independently predict risk for myocardial infarction in middle-aged men, Arterioscler. Thromb. Vasc. Biol. 26 (2006), pp. 406-410. doi: 10.1161/01.ATV.0000197827.12431.d0
[9] M.J. McQueen, S. Hawken, X. Wang, S. Ounpuu, A. Sniderman, J. Probstfield, K. Steyn, J.E. Sanderson, M. Hasani, E. Volkova, K. Kazmi, and S. Yusuf, Lipids, lipoproteins, and apolipoproteins as risk markers of myocardial infarction in 52 countries (the INTERHEART study): A case-control study, Lancet 372 (2008), pp. 224-233. doi: 10.1016/S0140-6736(08)61076-4
[10] I. Ntzoufras, Bayesian Modeling Using WinBUGS, 2nd ed., John Wiley & Sons, Inc., Hoboken, NJ, 2009. · Zbl 1218.62015
[11] S. Parish, R. Peto, A. Palmer, R. Clarke, S. Lewington, A. Offer, G. Whitlock, S. Clark, L. Youngman, P. Sleight, and R. Collins, The joint effects of apolipoprotein B, apolipoprotein A1, LDL cholesterol, and HDL cholesterol on risk: 3510 cases of acute myocardial infarction and 9805 controls, Eur. Heart J. 30 (2009), pp. 2137-46. Available at http://eurheartj.oxfordjournals.org/content/30/17/2137. doi: 10.1093/eurheartj/ehp221
[12] M.S. Pepe, The Statistical Evaluation of Medical Test for Classification and Prediction, Oxford University Press, Oxford, 2003.
[13] R Development Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2011. ISBN 3-900051-07-0, 2011. Available at http://www.r-project.org/.
[14] A.P. Sabino, M. De Oliveira Sousa, L. Moreira Lima, D. Dias Ribeiro, L.M. Sant’Ana Dusse, M. DasGraças Carvalho, and A.P. Fernandes, ApoB/ApoA-I ratio in young patients with ischemic cerebral stroke or peripheral arterial disease, Trans. Res. 152 (2008), pp. 113-118. Available at http://www.ncbi.nlm.nih.gov/pubmed/18774540. doi: 10.1016/j.trsl.2008.06.005
[15] B.J. Smith, Boa: An R package for MCMC output convergence, J. Statist. Softw. 21 (2007), pp. 1-37. Available at http://www.jstatsoft.org/v21/i11/paper?pagewanted=all. doi: 10.18637/jss.v021.i11
[16] A.D. Sniderman, I. Jungner, I. Holme, A. Aastveit, and G. Walldius, Errors that result from using the TC/HDL C ratio rather than the apoB/apoA-I ratio to identify the lipoprotein-related risk of vascular disease, J. Intern. Med. 259 (2006), pp. 455-461. Available at http://www.ncbi.nlm.nih.gov/pubmed/16629851. doi: 10.1111/j.1365-2796.2006.01649.x
[17] D.J. Spiegelhalter, N.G. Best, B.P. Carlin, and A. van der Linde, Bayesian measures of model complexity and fit, J. R. Stat. Soc. Ser. B 64 (2002), pp. 583-639. doi: 10.1111/1467-9868.00353 · Zbl 1067.62010
[18] D. Spiegelhalter, A. Thomas, N. Best, and R. Way, WinBUGS User Manual Version 1.4. MRC Biostatistics Unit, Cambridge, 2003. Available at http://www.mrc-bsu.cam.ac.uk/wp-content/uploads/manual14.pdf.
[19] S. Sturtz, U. Ligges, and A. Gelman, R2WinBUGS: A package for running WinBUGS from R, J. Statist. Softw. 12 (2005), pp. 1-16. doi: 10.18637/jss.v012.i03
[20] A. Thompson and J. Danesh, Associations between apolipoprotein B, apolipoprotein AI, the apolipoprotein B/AI ratio and coronary heart disease: A literature-based meta-analysis of prospective studies, J. Intern. Med. 259 (2006), pp. 481-492. doi: 10.1111/j.1365-2796.2006.01644.x
[21] G. Walldius, A.H. Aastveit, and I. Jungner, Stroke mortality and the apoB/apoA-I ratio: Results of the AMORIS prospective study, J. Intern. Med. 259 (2006), pp. 259-266. Available at http://www.ncbi.nlm.nih.gov/pubmed/16476103. doi: 10.1111/j.1365-2796.2005.01610.x
[22] G. Walldius, I. Jungner, A.H. Aastveit, I. Holme, C.D. Furberg, and A.D. Sniderman, The apoB/apoA-I ratio is better than the cholesterol ratios to estimate the balance between plasma proatherogenic and antiatherogenic lipoproteins and to predict coronary risk, Clin. Chem. Lab. Med. 42 (2004), pp. 1355-1363. doi: 10.1515/CCLM.2004.254
[23] S. Yusuf, S. Hawken, S. Ôunpuu, T. Dans, A. Avezum, F. Lanas, M. Mcqueen, A. Budaj, P. Pais, S. Ounpuu, J. Varigos, and L. Lisheng, Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): Case-control study, Lancet 364 (2004), pp. 937-952. Available at http://www.thelancet.com/journals/lancet/article/PIIS0140-6736(04)17018-9/fulltext. doi: 10.1016/S0140-6736(04)17018-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.