On the weak convergence rate of an exponential Euler scheme for SDEs governed by coefficients with superlinear growth. (English) Zbl 1475.60130

Summary: We consider the problem of designing robust numerical integration scheme of the solution of a one-dimensional SDE with non-globally Lipschitz drift and diffusion coefficients behaving as \(x^{\alpha}\), with \(\alpha >1\). We propose an (semi-explicit) exponential-Euler scheme for which we obtain a theoretical convergence rate for the weak error. To this aim, we analyze the \(C^{1,4}\) regularity of the solution of the associated backward Kolmogorov PDE using its Feynman-Kac representation and the flow derivative of the involved processes. Under some suitable hypotheses on the parameters of the model, we prove a rate of weak convergence of order one for the proposed exponential Euler scheme, and illustrate it with some numerical experiments.


60H35 Computational methods for stochastic equations (aspects of stochastic analysis)
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
65C30 Numerical solutions to stochastic differential and integral equations
Full Text: DOI arXiv Euclid


[1] Ait-Sahalia, Y. (1996). Testing continuous-time models of the spot interest rate. Rev. Financ. Stud. 9 385-426.
[2] Alfonsi, A. (2005). On the discretization schemes for the CIR (and Bessel squared) processes. Monte Carlo Methods Appl. 11 355-384. Zentralblatt MATH: 1100.65007
Digital Object Identifier: doi:10.1515/156939605777438569
· Zbl 1100.65007
[3] Beccari, M., Hutzenthaler, M., Jentzen, A., Kurniawan, R., Lindner, F. and Salimova, D. Strong and weak divergence of exponential and linear-implicit Euler approximations for stochastic partial differential equations with superlinearly growing nonlinearities. Available at arXiv:1903.06066. arXiv: 1903.06066
[4] Bossy, M. and Diop, A. (2010). Weak convergence analysis of the symmetrized Euler scheme for one dimensional SDEs with diffusion coefficient \(|x|^{\alpha }, \alpha \in [\frac{1}{2},1)\). Inria Research report no. 5396. Available at arxiv:1508.04573. arXiv: 1508.04573
[5] Bossy, M., Jabir, J.-F. and Martínez, K. (2020). Supplement to “On the weak convergence rate of an exponential Euler scheme for SDEs governed by coefficients with superlinear growth.” https://doi.org/10.3150/20-BEJ1241SUPP.
[6] Bossy, M. and Olivero, H. (2018). Strong convergence of the symmetrized Milstein scheme for some CEV-like SDEs. Bernoulli 24 1995-2042. Zentralblatt MATH: 1426.60067
Digital Object Identifier: doi:10.3150/16-BEJ918
Project Euclid: euclid.bj/1517540466
· Zbl 1426.60067
[7] Chan, K.C., Karolyi, G.A., Longstaff, F.A. and Sanders, A.B. (1992). An empirical investigation of alternative models of the short-term interest rate. J. Finance 47 1209-1227.
[8] Chassagneux, J.-F., Jacquier, A. and Mihaylov, I. (2016). An explicit Euler scheme with strong rate of convergence for financial SDEs with non-Lipschitz coefficients. SIAM J. Financial Math. 7 993-1021. Zentralblatt MATH: 1355.60072
Digital Object Identifier: doi:10.1137/15M1017788
· Zbl 1355.60072
[9] Cox, J.C., Ingersoll, J.E. Jr. and Ross, S.A. (1985). A theory of the term structure of interest rates. Econometrica 53 385-407. Zentralblatt MATH: 1274.91447
Digital Object Identifier: doi:10.2307/1911242
· Zbl 1274.91447
[10] Delbaen, F. and Shirakawa, H. (2002). A note on option pricing for the constant elasticity of variance model. Asia-Pac. Financ. Mark. 9 85-99. Zentralblatt MATH: 1072.91020
Digital Object Identifier: doi:10.1023/A:1022269617674
· Zbl 1072.91020
[11] Dereich, S., Neuenkirch, A. and Szpruch, L. (2012). An Euler-type method for the strong approximation of the Cox-Ingersoll-Ross process. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 468 1105-1115. Zentralblatt MATH: 1364.65013
Digital Object Identifier: doi:10.1098/rspa.2011.0505
· Zbl 1364.65013
[12] Friedman, A. (1975). Stochastic Differential Equations and Applications. Vol. 1. New York: Academic Press. Zentralblatt MATH: 0323.60056
· Zbl 0323.60056
[13] Gyöngy, I. (1998). A note on Euler’s approximations. Potential Anal. 8 205-216. · Zbl 0946.60059
[14] Higham, D.J., Mao, X. and Stuart, A.M. (2002). Strong convergence of Euler-type methods for nonlinear stochastic differential equations. SIAM J. Numer. Anal. 40 1041-1063. Zentralblatt MATH: 1026.65003
Digital Object Identifier: doi:10.1137/S0036142901389530
· Zbl 1026.65003
[15] Hochbruck, M. and Ostermann, A. (2010). Exponential integrators. Acta Numer. 19 209-286. Zentralblatt MATH: 1242.65109
Digital Object Identifier: doi:10.1017/S0962492910000048
· Zbl 1242.65109
[16] Hutzenthaler, M. and Jentzen, A. (2020). On a perturbation theory and on strong convergence rates for stochastic ordinary and partial differential equations with nonglobally monotone coefficients. Ann. Probab. 48 53-93. Zentralblatt MATH: 07206753
Digital Object Identifier: doi:10.1214/19-AOP1345
Project Euclid: euclid.aop/1585123323
· Zbl 07206753
[17] Hutzenthaler, M., Jentzen, A. and Kloeden, P.E. (2011). Strong and weak divergence in finite time of Euler’s method for stochastic differential equations with non-globally Lipschitz continuous coefficients. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 467 1563-1576. Zentralblatt MATH: 1228.65014
Digital Object Identifier: doi:10.1098/rspa.2010.0348
· Zbl 1228.65014
[18] Hutzenthaler, M., Jentzen, A. and Kloeden, P.E. (2012). Strong convergence of an explicit numerical method for SDEs with nonglobally Lipschitz continuous coefficients. Ann. Appl. Probab. 22 1611-1641. Zentralblatt MATH: 1256.65003
Digital Object Identifier: doi:10.1214/11-AAP803
Project Euclid: euclid.aoap/1344614205
· Zbl 1256.65003
[19] Karatzas, I. and Shreve, S.E. (1988). Brownian Motion and Stochastic Calculus. Graduate Texts in Mathematics 113. New York: Springer. Zentralblatt MATH: 0638.60065
· Zbl 0638.60065
[20] Lamba, H., Mattingly, J.C. and Stuart, A.M. (2007). An adaptive Euler-Maruyama scheme for SDEs: Convergence and stability. IMA J. Numer. Anal. 27 479-506. Zentralblatt MATH: 1127.65005
Digital Object Identifier: doi:10.1093/imanum/drl032
· Zbl 1127.65005
[21] Martínez, K. (2019). Penalized stochastic optimal control problems for singular McKean-Vlasov Dynamics and turbulent kinetic energy modeling with calibration on lagrangian turbulent flow models. Ph.D. thesis in Mathematics, Pontificia Universidad Católica de Valparaíso, Universidad Técnica Federico Santa María and Universidad de Valparaíso. August 2019.
[22] Milstein, G.N. and Tretyakov, M.V. (2005). Numerical integration of stochastic differential equations with nonglobally Lipschitz coefficients. SIAM J. Numer. Anal. 43 1139-1154. Zentralblatt MATH: 1102.60059
Digital Object Identifier: doi:10.1137/040612026
· Zbl 1102.60059
[23] Pope, D.A. (1963). An exponential method of numerical integration of ordinary differential equations. Commun. ACM 6 491-493. Zentralblatt MATH: 0117.11204
Digital Object Identifier: doi:10.1145/366707.367592
· Zbl 0117.11204
[24] Protter, P.E. (2004). Stochastic Integration and Differential Equations, 2nd ed. Applications of Mathematics (New York) 21. Berlin: Springer. Zentralblatt MATH: 1041.60005
· Zbl 1041.60005
[25] Sabanis, S. (2016). Euler approximations with varying coefficients: The case of superlinearly growing diffusion coefficients. Ann. Appl. Probab. 26 2083-2105. Zentralblatt MATH: 1352.60101
Digital Object Identifier: doi:10.1214/15-AAP1140
Project Euclid: euclid.aoap/1472745452
· Zbl 1352.60101
[26] Szpruch, L., Mao, X., Higham, D.J. and Pan, J. (2011). Numerical simulation of a strongly nonlinear Ait-Sahalia-type interest rate model. BIT 51 405-425. Zentralblatt MATH: 1230.65011
Digital Object Identifier: doi:10.1007/s10543-010-0288-y
· Zbl 1230.65011
[27] Yan, L. · Zbl 1020.60054
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.