zbMATH — the first resource for mathematics

Asymmetry of locally available and locally transmitted information in thermal two-qubit states. (English. Russian original) Zbl 07282999
J. Math. Sci., New York 252, No. 1, 43-59 (2021); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 151, 45-61 (2018).
Summary: In the paper, we consider thermal states of two particles with spin 1/2 (qubits) located in an inhomogeneous transverse magnetic field and interacting according to the Heisenberg \(XY\)-model. We introduce the concepts of magnitude and direction of asymmetry of the entropy of a state and the magnitude and asymmetry of a flow of locally transmitted information. We show that for the system considered, the asymmetry of entropy is directed from the particle in a weaker magnetic field toward the particle in a stronger magnetic field, and this direction coincides with the direction of the excess flow of locally transmitted information. We also demonstrate that this asymmetry direction is consistent with the direction of the excess flow of locally available information: measurements over the particle in a weaker magnetic field provide a greater level of locally available information than measurements over the particle in a stronger magnetic field.
81P45 Quantum information, communication, networks (quantum-theoretic aspects)
81R25 Spinor and twistor methods applied to problems in quantum theory
78A30 Electro- and magnetostatics
81P43 Quantum discord
81P17 Quantum entropies
81P15 Quantum measurement theory, state operations, state preparations
Full Text: DOI
[1] Bennett, CH; Brassard, G.; Crepeau, C.; Jozsa, R.; Peres, A.; Wootters, WK, Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels, Phys. Rev. Lett., 70, 1895 (1993) · Zbl 1051.81505
[2] Bennet, H.; Wiesner, SJ, Communication via one- and two-particle operators on Einstein- Podolsky-Rosen states, Phys. Rev. Lett., 69, 2881 (1992) · Zbl 0968.81506
[3] Cerf, NJ; Adami, C., Negative entropy and information in quantum mechanics, Phys. Rev. Lett., 79, 5194-5197 (1997) · Zbl 0944.81003
[4] Cerf, NJ; Adami, C., Quantum extension of conditional probability, Phys. Rev. A, 60, 893-897 (1999)
[5] Fanchini, FF; Castelano, LK; Cornelio, MF; de Oliveira, MC, Locally inaccessible information as a fundamental ingredient to quantum information, New J. Phys., 14 (2012)
[6] Fedorov, AK; Kiktenko, EO; Man’ko, OV; Man’ko, VI, Tomographic discord for a system of two coupled nanoelectric circuits, Phys. Scr., 90 (2015)
[7] Fel’dman, EB; Zenchuk, AI, Asymmetry of bipartite quantum discord, JETP Lett., 93, 459-462 (2011)
[8] Henderson, L.; Vedral, V., Classical, quantum and total correlations, J. Phys. A, 34, 6899 (2001) · Zbl 0988.81023
[9] A. S. Holevo, Quantum Systems, Channels, Information: A Mathematical Introduction, deGruyter (2012). · Zbl 1332.81003
[10] Horodecki, K.; Horodecki, M.; Horodecki, P., Are quantum correlations symmetric?, Quantum Inf. Comput., 10, 901-910 (2010) · Zbl 1236.81032
[11] Horodecki, M.; Oppenheim, J.; Winter, A., Partial quantum information, Nature, 436, 673-676 (2005)
[12] Horodecki, M.; Oppenheim, J.; Winter, A., Quantum state merging and negative information, Commun. Math. Phys., 269, 107-136 (2007) · Zbl 1113.81023
[13] Horodecki, R.; Horodecki, P., Quantum redundancies and local realism, Phys. Lett. A, 194, 147-152 (1994) · Zbl 0959.81512
[14] Imamoglu, A.; Awschalom, DD; Burkard, G.; DiVincenzo, DP; Loss, D.; Sherwin, M.; Small, A., Quantum information processing using quantum dot spins and cavity QED, Phys. Rev. Lett., 83, 4204-4207 (1999)
[15] Kiktenko, EO; Fedorov, AK, Tomographic causal analysis of two-qubit states and tomographic discord, Phys. Lett. A, 378, 1704 (2014) · Zbl 1331.81050
[16] Korotaev, SM, On the possibility of causal analysis of geophysical processes, Geomagn. Aeronom., 32, 1, 27-33 (1992)
[17] Kiktenko, EO; Korotaev, SM, Causal analysis of asymmetric entangled states under decoherence, Phys. Lett. A, 376, 820 (2012) · Zbl 1255.81090
[18] Korotaev, SM; Kiktenko, EO, Causal analysis of the quantum states, AIP Conf. Proc., 1316, 295-331 (2010)
[19] Korotaev, SM; Kiktenko, EO, Causality and decoherence in the asymmetric states, Phys. Scr., 85 (2012) · Zbl 1262.81016
[20] Maldonado-Trapp, A.; Hu, A.; Roa, L., Analytical solutions and criteria for the quantum discord of two-qubit X-states, Quantum Inf. Process., 14, 1947-1958 (2015) · Zbl 1317.81033
[21] Ollivier, H.; Zurek, WH, Quantum discord: A measure of the quantumness of correlations, Phys. Rev. Lett., 88 (2001) · Zbl 1255.81071
[22] Siewert, J.; Fazio, R.; Palma, GM; Sciacca, E., Aspects of qubit dynamics in the presence of leakage, J. Low Temp. Phys., 118, 795-804 (2000)
[23] Su, X.; Wang, W.; Wang, Y.; Jia, X.; Xie, C.; Peng, K., Continuous variable quantum key distribution based on optical entangled states without signal modulation, Eur. Phys. Lett., 87, 2005 (2009)
[24] Sun, Y.; Chen, Y.; Chen, H., Thermal entanglement in the two-qubit Heisenberg XY model under a nonuniform external magnetic field, Phys. Rev. A., 68 (2003)
[25] Wotters, WK, Entanglement of formation of an arbitrary state of two qubits, Phys. Rev. Lett., 80, 2245 (1998) · Zbl 1368.81047
[26] Wotters, WK; Zurek, WH, A single quantum cannot be cloned, Nature, 299, 802-803 (1982) · Zbl 1369.81022
[27] Ye, Y.; Tongqi, L.; Yu-En, L.; Qi-Zhong, Y., Quantum teleportation via a two-qubit Heisenberg XY chain: effects of anisotropy and magnetic field, J. Phys. A, 38, 3235 (2005) · Zbl 1065.81017
[28] Yu, T.; Eberly, JH, Evolution from entanglement to decoherence of bipartite mixed Xstates, Quantum Inf. Comput., 7, 459-468 (2007) · Zbl 1152.81830
[29] Zhang, J.; Long, GL; Zhang, W.; Deng, Z.; Liu, W.; Lu, Z., Simulation of Heisenberg XY interactions and realization of a perfect state transfer in spin chains using liquid nuclear magnetic resonance, Phys. Rev. A, 72 (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.