×

zbMATH — the first resource for mathematics

Projected Newton method for noise constrained \(\ell_p\) regularization. (English) Zbl 1455.65048
MSC:
65F22 Ill-posedness and regularization problems in numerical linear algebra
65F10 Iterative numerical methods for linear systems
65K05 Numerical mathematical programming methods
49M15 Newton-type methods
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Hansen P C 2010 Discrete Inverse Problems (Philadelphia, PA: SIAM) · Zbl 1197.65054
[2] Gazzola S and Novati P 2014 Automatic parameter setting for Arnoldi-Tikhonov methods J. Comput. Appl. Math.256 180-95 · Zbl 1314.65061
[3] Cornelis J, Schenkels N and Vanroose W 2020 Projected Newton method for noise constrained Tikhonov regularization Inverse Problems36 055002
[4] Lampe J, Reichel L and Voss H 2012 Large-scale Tikhonov regularization via reduction by orthogonal projection Linear Algebr. Appl.436 2845-65 · Zbl 1241.65044
[5] Calvetti D, Morigi S, Reichel L and Sgallari F 2000 Tikhonov regularization and the L-curve for large discrete ill-posed problems J. Comput. Appl. Math.123 423-46 Numerical Analysis 2000 Vol III: Linear Algebra · Zbl 0977.65030
[6] Gazzola S and Nagy J G 2014 Generalized Arnoldi-Tikhonov method for sparse reconstruction SIAM J. Sci. Comput.36 B225-47 · Zbl 1298.76248
[7] Rodriguez P and Wohlberg B 2008 An efficient algorithm for sparse representations with ℓp data fidelity term Proc. of 4th IEEE Andean Technical Conf.
[8] Chen S S, Donoho D L and Saunders M A 1998 Atomic decomposition by basis pursuit SIAM J. Sci. Comput.20 33-61 · Zbl 0919.94002
[9] Chung J and Gazzola S 2019 Flexible Krylov methods for ℓp regularization SIAM J. Sci. Comput.41 S149-71 · Zbl 1436.65043
[10] Gorodnitsky I F and Rao B D 1997 Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm IEEE Trans. Signal Process.45 600-16
[11] Chan T, Esedoglu S, Park F and Yip A 2006 Total variation image restoration: overview and recent developments Handbook of Mathematical Models in Computer Vision (Berlin: Springer) pp 17-31
[12] Wohlberg B and Rodriguez P 2007 An Iteratively reweighted norm algorithm for minimization of total variation functionals IEEE Signal Process. Lett.14 948-51
[13] Nocedal J and Wright S 2006 Numerical Optimization (Berlin: Springer)
[14] Landi G 2008 The Lagrange method for the regularization of discrete ill-posed problems Comput. Optim. Appl.39 347-68 · Zbl 1151.91732
[15] Lanza A, Morigi S, Reichel L and Sgallari F 2015 A generalized Krylov subspace method for ℓp-ℓq minimization SIAM J. Sci. Comput.37 S30-50 · Zbl 1343.65077
[16] Saheya B, Yu C-H and Chen J-S 2018 Numerical comparisons based on four smoothing functions for absolute value equation J. Appl. Math. Comput.56 131-49 · Zbl 1390.26020
[17] Herty M, Klar A, Singh A K and Spellucci P 2007 Smoothed penalty algorithms for optimization of nonlinear models Comput. Optim. Appl.37 157-76 · Zbl 1181.90222
[18] Wu C, Zhan J, Lu Y and Chen J-S 2019 Signal reconstruction by conjugate gradient algorithm based on smoothing ℓ1-norm Calcolo56 42 · Zbl 1434.90199
[19] Paige C C and Saunders M A 1975 Solution of sparse indefinite systems of linear equations SIAM J. Numer. Anal.12 617-29 · Zbl 0319.65025
[20] Paige C C and Saunders M A 1982 LSQR: an algorithm for sparse linear equations and sparse least squares ACM Trans. Math. Softw.8 43-71 · Zbl 0478.65016
[21] Golub G and Kahan W 1965 Calculating the singular values and pseudo-inverse of a matrix SIAM J. Numer. Anal. B 2 205-24 · Zbl 0194.18201
[22] Boyd S, Boyd S P and Vandenberghe L 2004 Convex Optimization (Cambridge: Cambridge University Press)
[23] Daniel J W, Gragg W B, Kaufman L and Stewart G W 1976 Reorthogonalization and stable algorithms for updating the Gram-Schmidt QR factorization Math. Comput.30 772-95 · Zbl 0345.65021
[24] Zhang F 2006 The Schur Complement and its Applications vol 4 (Berlin: Springer)
[25] Rodriguez P and Wohlberg B 2009 Efficient minimization method for a generalized total variation functional IEEE Trans. Image Process.18 322-32 · Zbl 1371.94316
[26] Gazzola S and Sabaté Landman M 2019 Flexible GMRES for total variation regularization Bit Numer. Math.59 721-46 · Zbl 1420.65021
[27] Gazzola S, Hansen P C and Nagy J G 2019 IR tools: a MATLAB package of iterative regularization methods and large-scale test problems Numer. Algorithms81 773-811 · Zbl 1415.65003
[28] Hansen P C 1994 Regularization tools: a MATLAB package for analysis and solution of discrete ill-posed problems Numer. Algorithms6 1-35 · Zbl 0789.65029
[29] Zhang L, Zhou W and Li D-H 2006 A descent modified Polak-Ribière-Polyak conjugate gradient method and its global convergence IMA J. Numer. Anal.26 629-40 · Zbl 1106.65056
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.