Morita, Yasuko; Umegaki, Atsuki; Umegaki, Yumiko Bicubic number fields with large class numbers. (English) Zbl 1460.11135 Mishou, Hidehiko (ed.) et al., Various aspects of multiple zeta functions – in honor of Professor Kohji Matsumoto’s 60th birthday. Proceedings of the international conference, Nagoya University, Nagoya, Japan August 21–25, 2020. Tokyo: Mathematical Society of Japan. Adv. Stud. Pure Math. 84, 335-351 (2020). Summary: For a given finite group \(G\), the problem whether there exist infinitely many number fields \(K\) with large class number and Galois group \(\text{Gal}(K/\boldsymbol{\text{Q}}) \cong G\) is interesting and important. This problem was proved affirmatively for some groups \(G\).In this paper, we approach this problem by considering \(h_KR_K\), where \(h_K\) is the class number of \(K\) and \(R_K\) is the regulator of \(K\). We prove that there exist infinitely many bicubic number fields \(K\) with large \(h_KR_K\). Moreover, we also prove generalization of the claim.For the entire collection see [Zbl 1446.11004]. MSC: 11R29 Class numbers, class groups, discriminants 11R21 Other number fields Keywords:class number; bicubic number fields PDF BibTeX XML Cite \textit{Y. Morita} et al., Adv. Stud. Pure Math. 84, 335--351 (2020; Zbl 1460.11135) Full Text: DOI Euclid OpenURL References: [1] Joseph H. Silverman, An inequality relating the regulator and the discriminant of a number fields,J. Number Theory19(1984), no. 3 437-442. · Zbl 0552.12003 [2] Atsuki Umegaki and Yumiko Umegaki, Quartic fields with large class number, to appear in Rocky Mountain J. · Zbl 1448.11201 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.