×

zbMATH — the first resource for mathematics

Inversion of multiconfiguration complex EMI data with minimum gradient support regularization: a case study. (English) Zbl 1451.86009
Summary: Frequency-domain electromagnetic instruments allow the collection of data in different configurations, that is, varying the intercoil spacing, the frequency, and the height above the ground. Their handy size makes these tools very practical for near-surface characterization in many fields of applications, for example, precision agriculture, pollution assessments, and shallow geological investigations. To this end, the inversion of either the real (in-phase) or the imaginary (quadrature) component of the signal has already been studied. Furthermore, in many situations, a regularization scheme retrieving smooth solutions is blindly applied, without taking into account the prior available knowledge. The present work discusses an algorithm for the inversion of the complex signal in its entirety, as well as a regularization method that promotes the sparsity of the reconstructed electrical conductivity distribution. This regularization strategy incorporates a minimum gradient support stabilizer into a truncated generalized singular value decomposition scheme. The results of the implementation of this sparsity-enhancing regularization at each step of a damped Gauss-Newton inversion algorithm (based on a nonlinear forward model) are compared with the solutions obtained via a standard smooth stabilizer. An approach for estimating the depth of investigation, that is, the maximum depth that can be investigated by a chosen instrument configuration in a particular experimental setting, is also discussed. The effectiveness and limitations of the whole inversion algorithm are demonstrated on synthetic and real data sets.
MSC:
86A22 Inverse problems in geophysics
86-08 Computational methods for problems pertaining to geophysics
Software:
FDEMtools; UTV
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Andrews, GE; Askey, R.; Roy, R., Special functions. Encyclopedia of mathematics and its applications (1999), Cambridge: Cambridge University Press, Cambridge
[2] Archie, G., The electrical resistivity log as an aid in determining some reservoir characteristics, Trans AIME, 146, 1, 54-62 (1942)
[3] Björck, A., Numerical methods for least squares problems (1996), Philadelphia: SIAM, Philadelphia · Zbl 0847.65023
[4] Boaga, J.; Ghinassi, M.; D’Alpaos, A.; Deidda, GP; Rodriguez, G.; Cassiani, G., Geophysical investigations unravel the vestiges of ancient meandering channels and their dynamics in tidal landscapes, Sci Rep, 8, 1708 (2018)
[5] Christiansen, A.; Auken, E., A global measure for depth of investigation, Geophysics, 77, 4, WB171-WB177 (2012)
[6] Deidda, GP; Fenu, C.; Rodriguez, G., Regularized solution of a nonlinear problem in electromagnetic sounding, Inverse Probl, 30, 125014 (2014) · Zbl 1308.35294
[7] Deidda, GP; Díaz de Alba, P.; Rodriguez, G., Identifying the magnetic permeability in multi-frequency EM data inversion, Electron Trans Numer Anal, 47, 1-17 (2017) · Zbl 1372.65118
[8] Deidda GP, Díaz de Alba P, Rodriguez G, Vignoli G (2018) Smooth and sparse inversion of EMI data from multi-configuration measurements. In: 2018 IEEE 4th international forum on research and technology for society and industry (RTSI 2018). Palermo, Italy, pp 213-218
[9] Deidda, GP; Díaz de Alba, P.; Fenu, C.; Lovicu, G.; Rodriguez, G., FDEMtools: a MATLAB package for FDEM data inversion, Numer Algorithms (2019) · Zbl 1451.65042
[10] Díaz de Alba, P.; Rodriguez, G.; Ortegón Gallego, F.; Redondo Neble, M.; Rodríguez Galván, J., Regularized inversion of multi-frequency EM data in geophysical applications, Trends in differential equations and applications. SEMA SIMAI Springer Series, 357-369 (2016), Basel: Springer, Basel · Zbl 06981865
[11] Dragonetti, G.; Comegna, A.; Ajeel, A.; Deidda, GP; Lamaddalena, N.; Rodriguez, G.; Vignoli, G.; Coppola, A., Calibrating electromagnetic induction conductivities with time-domain reflectometry measurements, Hydrol Earth Syst Sci, 22, 1509-1523 (2018)
[12] Farquharson, CG; Oldenburg, DW; Routh, PS, Simultaneous 1D inversion of loop-loop electromagnetic data for magnetic susceptibility and electrical conductivity, Geophysics, 68, 6, 1857-1869 (2003)
[13] Fiandaca, G.; Doetsch, J.; Vignoli, G.; Auken, E., Generalized focusing of time-lapse changes with applications to direct current and time-domain induced polarization inversions, Geophys J Int, 203, 2, 1101-1112 (2015)
[14] Guillemoteau, J.; Simon, F.; Luck, E.; Tronicke, J., 1D sequential inversion of portable multi-configuration electromagnetic induction data, Near Surf Geophys, 14, 411-420 (2016)
[15] Gunning, J.; Glinsky, M.; Hedditch, J., Resolution and uncertainty in 1D CSEM inversion: a Bayesian approach and open-source implementation, Geophysics, 75, 6, F151-F171 (2010)
[16] Haaken, K.; Deidda, GP; Cassiani, G.; Deiana, R.; Putti, M.; Paniconi, C.; Scudeler, C.; Kemna, A., Flow dynamics in hyper-saline acquifers: hydro-geophysical monitoring and modelling, Hydrol Earth Syst Sc, 21, 1439-1454 (2017)
[17] Hansen, P., Rank-deficient and discrete Ill-posed problems: numerical aspects of linear inversion (1998), Philadelphia: SIAM, Philadelphia
[18] Hochstenbach, ME; Reichel, L.; Rodriguez, G., Regularization parameter determination for discrete ill-posed problems, J Comput Appl Math, 273, 132-149 (2015) · Zbl 1295.65046
[19] Horst, R.; Pardalos, PM, Handbook of global optimization. Nonconvex optimization and its applications (2013), Berlin: Springer, Berlin
[20] Huang, H.; Won, IJ, Real-time resistivity sounding using a hand-held broadband electromagnetic sensor, Geophysics, 68, 4, 1224-1231 (2003)
[21] Kaipio, JP; Kolehmainen, V.; Somersalo, E.; Vauhkonen, M., Statistical inversion and monte carlo sampling methods in electrical impedance tomography, Inverse Probl, 16, 5, 1487 (2000) · Zbl 1044.78513
[22] Last, BJ; Kubik, K., Compact gravity inversion, Geophysics, 48, 6, 713-721 (1983)
[23] Lesch, S.; Strauss, D.; Rhoades, J., Spatial prediction of soil salinity using electromagnetic induction techniques: 1. Statistical prediction models: a comparison of multiple linear regression and cokriging, Water Resour Res, 31, 373-386 (1995)
[24] Ley-Cooper A, Viezzoli A, Guillemoteau J, Vignoli G, Macnae J, Cox L, Munday T (2015) Airborne electromagnetic modelling options and their consequences in target definition. In: Exploration geophysics 46, special issue: 6th international conference in airborne electromagnetics (AEM 2013), pp 74-84
[25] Martinelli, P.; Duplaá, M., Laterally filtered 1D inversions of small-loop, frequency-domain EMI data from a chemical waste site, Geophysics, 73, 143-149 (2008)
[26] Minsley, B.; Abraham, J.; Smith, B.; Cannia, J.; Voss, C.; Jorgenson, M.; Walvoord, M.; Wylie, B.; Anderson, L.; Ball, L.; Deszcz-Pan, M.; Wellman, T.; Ager, T., Airborne electromagnetic imaging of discontinuous permafrost, Geophys Res Lett, 39, 2, L02503 (2012)
[27] Nabighian, M.; Macnae, J., Time-domain electromagnetic prospecting methods, Electromagn Methods Appl Geohpys Soc Explor Geophys, 2, 427-520 (1989)
[28] Oldenburg, D.; Li, Y., Estimating depth of investigation in DC resistivity and IP surveys, Geophysics, 64, 403-416 (1999)
[29] Osella, A.; de la Vega, M.; Lascano, E., 3D electrical imaging of an archaeological site using electrical and electromagnetic methods, Geophysics, 70, 101-107 (2005)
[30] Paine, J., Determining salinization extent, identifying salinity sources, and estimating chloride mass using surface, borehole, and airborne electromagnetic induction methods, Water Resour Res, 39, 1059 (2003)
[31] Park, Y.; Reichel, L.; Rodriguez, G.; Yu, X., Parameter determination for Tikhonov regularization problems in general form, J Comput Appl Math, 343, 12-25 (2018) · Zbl 1391.65100
[32] Pellerin, L., Applications of electrical and electromagnetic methods for environmental and geotechnical investigations, Surv Geophys, 23, 101-132 (2002)
[33] Portniaguine, O.; Zhdanov, M., Focusing geophysical inversion images, Geophysics, 64, 874-887 (1999)
[34] Reichel, L.; Rodriguez, G., Old and new parameter choice rules for discrete ill-posed problems, Numer Algorithms, 63, 1, 65-87 (2013) · Zbl 1267.65045
[35] Rudin, LI; Osher, S.; Fatemi, E., Nonlinear total variation based noise removal algorithms, Physica D, 60, 1-4, 259-268 (1992) · Zbl 0780.49028
[36] Vasić D, Ambruš D, Bilas V (2015) Stochastic inversion of two-layer soil model parameters from electromagnetic induction data. In: 2015 IEEE sensors applications symposium (SAS), IEEE, pp 1-5
[37] Vatankhah, S.; Renaut, R.; Ardestani, V., 3D Projected \({L}_1\) inversion of gravity data using truncated unbiased predictive risk estimator for regularization parameter estimation, Geophys J Int, 210, 1872-1887 (2017)
[38] Viezzoli, A.; Christiansen, A.; Auken, E.; Sorensen, K., Quasi-3D modeling of airborne TEM data by spatially constrained inversion, Geophysics, 73, F105-F113 (2008)
[39] Viezzoli, A.; Munday, T.; Auken, E.; Christiansen, A., Accurate quasi 3D versus practical full 3D inversion of AEM data—the Bookpurnong case study, Preview, 149, 23-31 (2010)
[40] Vignoli, G.; Deiana, R.; Cassiani, G., Focused inversion of vertical radar profile (VRP) travel-time data, Geophysics, 77, H9-H18 (2012)
[41] Vignoli, G.; Fiandaca, G.; Christiansen, A.; Kirkegaard, C.; Auken, E., Sharp spatially constrained inversion with applications to transient electromagnetic data, Geophys Prospect, 63, 243-255 (2015)
[42] Vignoli, G.; Sapia, V.; Menghini, A.; Viezzoli, A., Examples of improved inversion of different airborne electromagnetic datasets via sharp regularization, J Environ Eng Geophys, 22, 51-61 (2017)
[43] Wait, J., Geo-electromagnetism (1982), New York: Academic Press, New York
[44] Wei, Z.; Zhang, J.; Xu, Z.; Huang, Y.; Liu, Y.; Fan, X., Gradient projection with approximate \(L_0\) norm minimization for sparse reconstruction in compressed sensing, Sensors, 18, 10, 3373 (2018)
[45] Yao, R.; Yang, J., Quantitative evaluation of soil salinity and its spatial distribution using electromagnetic induction method, Agric Water Manage, 97, 1961-1970 (2010)
[46] Zhdanov, M., Geophysical inverse theory and regularization problems (2002), Amsterdam: Elsevier, Amsterdam
[47] Zhdanov, M.; Vignoli, G.; Ueda, T., Sharp boundary inversion in crosswell travel-time tomography, J Geophys Eng, 3, 122-134 (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.