×

zbMATH — the first resource for mathematics

Reliable computer simulation methods for electrostatic biomolecular models based on the Poisson-Boltzmann equation. (English) Zbl 1451.65197
Summary: The paper is concerned with the reliable numerical solution of a class of nonlinear interface problems governed by the Poisson-Boltzmann equation. Arising in electrostatic biomolecular models these problems typically contain measure-type source terms and their solution often exposes drastically different behaviour in different subdomains. The interface conditions reflect the requirement that the potential and its normal derivative must be continuous. In the first part of the paper, we discuss an appropriate weak formulation of the problem that guarantees existence and uniqueness of the generalized solution. In the context of the considered class of nonlinear equations, this question is not trivial and requires additional analysis, which is based on a special splitting of the problem into simpler subproblems whose weak solutions can be defined in standard Sobolev spaces. This splitting also suggests a rational numerical solution strategy and a way of deriving fully guaranteed error bounds. These bounds (error majorants) are derived for each subproblem separately and, finally, yield a fully computable majorant of the difference between the exact solution of the original problem and any energy-type approximation of it. The efficiency of the suggested computational method is verified in a series of numerical tests related to real-life biophysical systems.
MSC:
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
35R06 PDEs with measure
35J20 Variational methods for second-order elliptic equations
35J61 Semilinear elliptic equations
49M29 Numerical methods involving duality
65J15 Numerical solutions to equations with nonlinear operators (do not use 65Hxx)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] R. Adams and J. Fournier, Sobolev Spaces, Pure Appl. Math. 140, Elsevier, Amsterdam, 2003.
[2] D. Andelman, Chapter 12 - Electrostatic properties of membranes: The Poisson-Boltzmann theory, Structure and Dynamics of Membranes. Vol. 1, Handbook Biol. Phys., North-Holland, Amsterdam (1995), 603-642.
[3] D. Andelman, Introduction to electrostatics in soft and biological matter, Soft Condensed Matter Physics in Molecular and Cell Biology, Taylor & Francis, New York (2006), 97-122.
[4] D. Bashford, An object-oriented programming suite for electrostatic effects in biological molecules, Proceedings of the Scientific Computing in Object-Oriented Parallel Environments—ISCOPE ’97, Springer, London (1997), 233-240.
[5] D. Bashford, Macroscopic electrostatic models for protonation states in proteins, Frontiers Biosci. 9 (2004), no. 2, 1082-1099.
[6] P. Bénilan and H. Brezis, Nonlinear problems related to the Thomas-Fermi equation, J. Evol. Equ. 3 (2003), no. 4, 673-770. · Zbl 1150.35406
[7] L. Boccardo and T. Gallouët, Non-linear elliptic and parabolic equations involving measure data, J. Funct. Anal. 87 (1989), 149-169. · Zbl 0707.35060
[8] L. Boccardo, T. Gallouët and L. Orsina, Existence and nonexistence of solutions for some nonlinear elliptic equations, J. Anal. Math. 73 (1997), 203-223. · Zbl 0898.35035
[9] D. Braess, V. Pillwein and J. Schöberl, Equilibrated residual error estimates are p-robust, Comput. Methods Appl. Mech. Engrg. 198 (2009), no. 13-14, 1189-1197. · Zbl 1157.65483
[10] D. Braess and J. Schöberl, Equilibrated residual error estimator for edge elements, Math. Comp. 77 (2008), no. 262, 651-672. · Zbl 1135.65041
[11] H. Brezis, Nonlinear elliptic equations involving measures, Contributions to Nonlinear Partial Differential Equations (Madrid 1981), Res. Notes in Math. 89, Pitman, Boston (1983), 82-89.
[12] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2011. · Zbl 1220.46002
[13] H. Brezis, M. Marcus and A. C. Ponce, Nonlinear elliptic equations with measures revisited, Mathematical Aspects of Nonlinear Dispersive Equations, Ann. of Math. Stud. 163, Princeton University, Princeton (2007), 55-109. · Zbl 1151.35034
[14] B. R. Brooks, C. L. Brooks III, A. D. Mackerell, L. Nilsson, R. J. Petrella, B. Roux, Y. Won, G. Archontis, C. Bartels, S. Boresch A. Caflisch, L. Caves, Q. Cui, A. R. Dinner, M. Feig, S. Fischer, J. Gao, M. Hodoscek, W. Im, K. Kuczera, T. Lazaridis, J. Ma, V. Ovchinnikov, E. Paci, R. W. Pastor, C. B. Post, J. Z. Pu, M. Schaefer, B. Tidor, R. M. Venable, H. L. Woodcock, X. Wu, W. Yang, D. M. York and M. Karplus, CHARMM: The biomolecular simulation program, J. Comput. Chem. 30 (2009), no. 10, 1545-1614.
[15] J. Buse, Insulin analogues, Curr. Opin. Endocrinol. Diabetes 8 (2001), 95-100.
[16] D. Chapman, A contribution to the theory of electrocapillarity, Phil. Mag. 25 (1913), 475-481. · JFM 44.0918.01
[17] L. Chen, M. J. Holst and J. Xu, Adaptive finite element modeling techniques for the Poisson-Boltzmann equation, Siam J. Numer. Anal. 45 (2007), no. 6, 2298-2320. · Zbl 1152.65478
[18] M. Chen, B. Tu and B. Lu, Triangulated manifold meshing method preserving molecular surface topology, J. Mol. Graph. Model. 38 (2012), 411-418.
[19] I. Chern, J. Liu and W. Wang, Accurate evaluation of electrostatics for macromolecules in solution, Methods Appl. Anal. 10 (2003), 309-328. · Zbl 1099.92500
[20] H. Childs, E. Brugger, B. Whitlock, J. Meredith, S. Ahern, D. Pugmire, K. Biagas, M. Miller, C. Harrison, G. H. Weber, H. Krishnan, T. Fogal, A. Sanderson, C. Garth, E. Wes Bethel, D. Camp, O. Rübel, M. Durant, J. M. Favre and P. Navrátil, VisIt: An end-user tool for visualizing and analyzing very large data, High Performance Visualization-Enabling Extreme-Scale Scientific Insight, CRC Press, New York (2012), 357-372.
[21] P. Ciarlet, Linear and Nonlinear Functional Analysis with Applications, Society for Industrial and Applied Mathematics, Philadelphia, 2013.
[22] B. Dacorogna, Direct Methods in the Calculus of Variations, Springer, New York, 2008. · Zbl 1140.49001
[23] C. Dapogny, C. Dobrzynski and P. Frey, Three-dimensional adaptive domain remeshing, implicit domain meshing, and applications to free and moving boundary problems, J. Comput. Phys. 262 (2014), 358-378. · Zbl 1349.76598
[24] R. Dautray and J. L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology. Volume 6, Springer, Berlin, 2000.
[25] P. Debye and E. Hückel, Zur Theorie der Elektrolyte, Phys. Zeitschr. 24 (1923), 185-206. · JFM 49.0587.11
[26] S. Decherchi and W. Rocchia, A general and robust ray-casting-based algorithm for triangulating surfaces at the nanoscale, PLOS ONE 8 (2013), no. 4, 1-15.
[27] C. Dobrzynski, MMG3D: User Guide, Technical Report RT-0422, INRIA, 2012.
[28] J. Droniou, T. Gallouët and R. Herbin, A finite volume scheme for a noncoercive elliptic equation with measure data, SIAM J. Numer. Anal. 41 (2003), no. 6, 1997-2031. · Zbl 1058.65127
[29] I. Ekeland and R. Temam, Convex Analysis and Variational Problems, North-Holland, Amsterdam, 1976.
[30] M. Fixman, The Poisson-Boltzmann equation and its application to polyelectrolytes, J. Chem. Phys. 70 (1979), no. 11, 4995-5005.
[31] F. Fogolari, A. Brigo and H. Molinari, The Poisson-Boltzmann equation for biomolecular electrostatics: A tool for structural biology, J. Mol. Recognit. 15 (2002), 377-392.
[32] T. Gallouët and R. Herbin, Convergence of linear finite elements for diffusion equations with measure data, C. R. Math. Acad. Sci. Paris 338 (2004), no. 1, 81-84. · Zbl 1038.65110
[33] M. Gilson, M. Davis, B. Luty and J. McCammon, Computation of electrostatic forces on solvated molecules using the Poisson-Boltzmann equation, J. Phys. Chem. 97 (1993), 3591-3600.
[34] G. Gouy, Constitution of the electric charge at the surface of an electrolyte, J. Phys. 9 (1910), 457-468. · JFM 41.0957.01
[35] F. Hecht, New development in FreeFem++, J. Numer. Math. 20 (2012), no. 3-4, 251-265. · Zbl 1266.68090
[36] M. Holst, N. Baker and F. Wang, Adaptive multilevel finite element solution of the Poisson-Boltzmann equation I. Algorithms and examples, J. Comput. Chem. 21 (2000), no. 15, 1319-1342.
[37] M. Holst, J. McCammon, Z. Yu, Y. C. Zhou and Y. Zhu, Adaptive finite element modeling techniques for the Poisson-Boltzmann equation, Commun. Comput. Phys. 11 (2012), 179-214. · Zbl 1373.82077
[38] N. Ji, T. Liu, J. Xu, L. Q. Shen and B. Lu, A finite element solution of lateral periodic Poisson-Boltzmann model for membrane channel proteins, Int. J. Molecular Sci. 19 (2018), 10.3390/ijms19030695.
[39] B. Kawohl and M. Lucia, Best constants in some exponential Sobolev inequalities, Indiana Univ. Math. J. 57 (2008), no. 4, 1907-1928. · Zbl 1170.46033
[40] J. Kirkwood, Theory of solutions of molecules containing widely separated charges with special applications to zwitterions, J. Chem. Phys. 7 (1934), 351-361. · Zbl 0009.27504
[41] I. Klapper, R. Hagstrom, R. Fine, K. Sharp and B. Honig, Focusing of electric fields in the active site of Cu-Zn superoxide dismutase: Effects of ionic strength and amino-acid modification, Proteins 1 (1986), no. 1, 47-59.
[42] J. Kraus, S. Nakov and S. Repin, Reliable numerical solution of a class of nonlinear elliptic problems generated by the Poisson-Boltzmann equation, Comput. Methods Appl. Math. 20 (2020), no. 2, 293-319. · Zbl 1447.65150
[43] A. J. Kurdila and M. Zabarankin, Convex Functional Analysis, Birkhäuser, Basel, 2005. · Zbl 1077.46002
[44] G. Lamm, The Poisson-Boltzmann Equation, Rev. Comput. Chem. 19 (2003), 147-365.
[45] G. Leioni, A First Course in Sobolev Spaces, American Mathematical Society, Providence, 2009.
[46] J. Li, S. Wijeratne, X. Qiu and C.-H. Kiang, DNA under force: Mechanics, electrostatics, and hydration, Nanomaterials 5 (2015), no. 1, 246-267.
[47] J. Lipfert, S. Doniach, R. Das and D. Herschlag, Understanding nucleic acid-ion interactions, Ann. Rev. Biochem. 83 (2014), 813-841.
[48] T. Liu, S. Bai, B. Tu, M. Chen and B. Lu, Membrane-channel protein system mesh construction for finite element simulations, Comput. Math. Biophys. 3 (2005), no. 1, 128-139.
[49] T. Liu, M. Chen and B. Lu, Efficient and qualified mesh generation for Gaussian molecular surface using adaptive partition and piecewise polynomial approximation, SIAM J. Sci. Comput. 40 (2018), 507-527.
[50] B. Lu, Y. Zhou, M. Holst and J. McCammon, Recent progress in numerical methods for the Poisson-Boltzmann equation in biophysical applications, Commun. Comput. Phys. 3 (2008), no. 5, 973-1009. · Zbl 1186.92005
[51] J. Madura, J. Briggs, R. Wade, M. Davis, B. Luty, A. Ilin, J. Antosiewicz, M. Gilson, B. Bagheri, L. Scott and J. McCammon, Electrostatics and diffusion of molecules in solution: Simulations with the University of Houston Brownian Dynamics program, Comput. Phys. Commun. 91 (1995), no. 1, 57-95.
[52] S. Nakov, The Poisson-Boltzmann equation: Analysis, a posteriori error estimates and applications, PhD thesis, Johannes Kepler University, 2019.
[53] P. Neittaanmäki and S. Repin, Reliable Methods for Computer Simulation: Error Control and Posteriori Estimates, Elsevier, Amsterdam, 2004. · Zbl 1076.65093
[54] A. Nicholls, K. Sharp and B. Honig, Protein folding and association: Insights from the interfacial and thermodynamic properties of hydrocarbons, Proteins 11 (1991), no. 4, 281-296.
[55] C. Niedermeier and K. Schulten, Molecular dynamics simulations in heterogeneous dielectrica and Debye-Huckel media-application to the protein bovine pancreatic trypsin inhibitor, Molecular Simul. 8 (1992), 361-387.
[56] H. Oberoi and N. Allewell, Multigrid solution of the nonlinear Poisson-Boltzmann equation and calculation of titration curves, Biophys. J. 65 (1993), 48-55.
[57] A. Prignet, Remarks on existence and uniqueness of solutions of elliptic problems with right-hand side measures, Rend. Mat. Appl. (7) 15 (1995), no. 3, 321-337. · Zbl 0843.35127
[58] S. Repin, A posteriori error estimation for variational problems with uniformly convex functionals, Math. Comp. 69 (2000), 481-500. · Zbl 0949.65070
[59] S. Repin, Two-sided estimates of deviation from exact solutions of uniformly elliptic equations, Proceedings of the St. Petersburg Mathematical Society. Vol. IX, Amer. Math. Soc. Transl. Ser. 2 209, American Mathematical Society, Providence (2003), 143-171. · Zbl 1039.65076
[60] S. Repin, A Posteriori Estimates for Partial Differential Equations, Radon Ser. Comput. Appl. Math. 4, Walter de Gruyter, Berlin, 2008. · Zbl 1162.65001
[61] N. Rogers and M. Sternberg, Electrostatic interactions in globular proteins: Different dielectric models applied to the packing of α-helices, J. Molecular Biol. 174 (1984), no. 3, 527-542.
[62] I. Sakalli, J. Schöberl and E. W. Knapp, mFES: A robust molecular finite element solver for electrostatic energy computations, J. Chem. Theory Comput. 10 (2014), 5095-5112.
[63] K. Sharp and B. Honig, Calculating total electrostatic energies with the nonlinear Poisson-Boltzmann equation, J. Phys. Chem. 94 (1990), 7684-7692.
[64] H. Si, TetGen, a Delaunay-based quality tetrahedral mesh generator, ACM Trans. Math. Software 41 (2015), Article ID 11. · Zbl 1369.65157
[65] E. Sobakinskaya, M. Schmidt am Busch and T. Renger, Theory of FRET “spectroscopic ruler” for short distances: Application to polyproline, J. Phys. Chem. B 112 (2018), 54-67.
[66] Z.-J. Tan and S.-J. Chen, Predicting electrostatic forces in RNA folding, Methods Enzymol. 469 (2009), 465-487.
[67] N. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473-483. · Zbl 0163.36402
[68] Z. Wan, Enhancing the activity of insulin at the receptor interface: Crystal structure and photo-cross-linking of A8 analogues, Biochemistry 43 (2004), 16119-16133.
[69] Z. Zhou, P. Payne, M. Vasquez, N. Kuhn and M. Levitt, Finite-difference solution of the Poisson-Boltzmann equation: Complete elimination of self-energy, J. Comput. Chem. 17 (1996), no. 11, 1344-1351.
[70] Blender Online Community, Blender - A 3D modelling and rendering package, Blender Foundation, Blender Institute, Amsterdam, 2017.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.