×

On Riemann-Poisson Lie groups. (English) Zbl 1524.53170

A Riemann-Poisson Lie group is a Lie group endowed with a left invariant Riemannian metric and a left invariant Poisson tensor satisfying a compatibility condition. Such groups belong to the family of Riemann-Poisson manifolds introduced and studied by the second author in several publications. In this paper, the authors study these Lie groups and present a characterization of their Lie algebras. Moreover, a way of building these Lie algebras is given and a list up to dimension 5 is given.

MSC:

53D17 Poisson manifolds; Poisson groupoids and algebroids
22E05 Local Lie groups
22E60 Lie algebras of Lie groups
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Ait Haddou, M.; Boucetta, M.; Lebzioui, H., Left-invariant Lorentzian flat metrics on Lie groups, J. Lie Theory 22 (1) (2012), 269-289 · Zbl 1243.53110
[2] Boucetta, M., Compatibilité des structures pseudo-riemanniennes et des structures de Poisson, C.R. Acad. Sci. Paris Sér. I 333 (2001), 763-768 · Zbl 1009.53057 · doi:10.1016/S0764-4442(01)02132-2
[3] Boucetta, M., Riemann-Poisson manifolds and Kähler-Riemann foliations, C.R. Acad. Sci. Paris, Sér. I 336 (2003), 423-428 · Zbl 1042.53014 · doi:10.1016/S1631-073X(03)00079-7
[4] Boucetta, M., Poisson manifolds with compatible pseudo-metric and pseudo-Riemannian Lie algebras, Differential Geom. Appl. 20 (2004), 279-291 · Zbl 1061.53058 · doi:10.1016/j.difgeo.2003.10.013
[5] Boucetta, M., On the Riemann-Lie algebras and Riemann-Poisson Lie groups, J. Lie Theory 15 (1) (2005), 183-195 · Zbl 1077.53065
[6] Deninger, C.; Singhof, W., Real polarizable hodge structures arising from foliation, Ann. Global Anal. Geom. 21 (2002), 377-399 · Zbl 1011.53026 · doi:10.1023/A:1015652906096
[7] Dufour, J. P.; Zung, N. T., Poisson Structures and Their Normal Forms, Progress in Mathematics, vol. 242, Birkhäuser Verlag, 2005 · Zbl 1082.53078
[8] Fernandes, R. L., Connections in Poisson Geometry 1: Holonomy and invariants, J. Differential Geom. 54 (2000), 303-366 · Zbl 1036.53060 · doi:10.4310/jdg/1214341648
[9] Ha, K. Y.; Lee, J. B., Left invariant metrics and curvatures on simply connected three dimensional Lie groups, Math. Nachr. 282 (2009), 868-898 · Zbl 1172.22006 · doi:10.1002/mana.200610777
[10] Hawkin, E., The structure of noncommutative deformations, J. Differential Geom. 77 (2007), 385-424 · Zbl 1130.53062 · doi:10.4310/jdg/1193074900
[11] Milnor, J., Curvatures of left invariant metrics on Lie Groups, Adv. Math. 21 (1976), 293-329 · Zbl 0341.53030 · doi:10.1016/S0001-8708(76)80002-3
[12] Ovando, G., Invariant pseudo-Kähler metrics in dimension four, J. Lie Theory 16 (2006), 371-391 · Zbl 1102.32011
[13] Vaisman, I., Lectures on the Geometry of Poisson Manifolds, Progress in Mathematics, vol. 118, Birkhäuser, Berlin, 1994 · Zbl 0810.53019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.