Dušek, Zdeněk Structure of geodesics in weakly symmetric Finsler metrics on H-type groups. (English) Zbl 07285964 Arch. Math., Brno 56, No. 5, 265-275 (2020). A Finsler g.o. space is a homogeneous Finsler space so that each geodesic of (with respect to the Chern connection) is an orbit of a one-parameter subgroup of the group of isometries. A tool to study g.o. spaces in Riemannian manifolds is the notion of geodesic graph, introduced by O. Kowalski and the author.In the present paper special families of weakly symmetric Finsler metrics are considered. It is known that these are g.o. spaces (e.g. [S. Deng, Homogeneous Finsler spaces. New York: Springer (2012; Zbl 1253.53002)]).The author considers weakly symmetric metrics on modified H-type groups which were studied in [Z. Yan and S. Deng, Differ. Geom. Appl. 36, 1–23 (2014; Zbl 1308.53114)].He then constructs geodesic graphs on 5-dimensional and 6-dimensional H-type groups with these Finsler metrics and compare them with Riemannian geodesic graphs constructed in [O. Kowalski and S. Ž. Nikčević, Arch. Math. 73, No. 3, 223–234 (1999; Zbl 0940.53027); Arch. Math. 79, No. 2, 158–160 (2002; Zbl 1029.53063)], and with Randers geodesic graphs constructed in [Z. Dušek, Commentat. Math. Univ. Carol. 61, No. 2, 195–211 (2020; Zbl 1474.53206)]. Reviewer: Andreas Arvanitoyeorgos (Pátra) Cited in 1 Document MSC: 53C22 Geodesics in global differential geometry 53C60 Global differential geometry of Finsler spaces and generalizations (areal metrics) 53C30 Differential geometry of homogeneous manifolds Keywords:Finsler space; weakly symmetric space; g.o. space; homogeneous geodesic; geodesic graph Citations:Zbl 1253.53002; Zbl 1308.53114; Zbl 0940.53027; Zbl 1029.53063; Zbl 1474.53206 PDF BibTeX XML Cite \textit{Z. Dušek}, Arch. Math., Brno 56, No. 5, 265--275 (2020; Zbl 07285964) Full Text: DOI References: [1] Alekseevsky, D.; Arvanitoyeorgos, A., Riemannian flag manifolds with homogeneous geodesics, Trans. Amer. Math. Soc. 359 (2007), 3769-3789 · Zbl 1148.53038 [2] Bao, D.; Chern, S.-S.; Shen, Z., An Introduction to Riemann-Finsler Geometry, Springer Science+Business Media, New York, 2000 · Zbl 0954.53001 [3] Berndt, J.; Kowalski, O.; Vanhecke, L., Geodesics in weakly symmetric spaces, Ann. Glob. Anal. Geom. 15 (1997), 153-156 · Zbl 0880.53044 [4] Berndt, J.; Tricerri, F.; Vanhecke, L., Generalized Heisenberg groups and Damek-Ricci harmonic spaces, Lecture Notes in Math., vol. 1598, Springer-Verlag, Berlin-Heidelberg-New York, 1995 · Zbl 0818.53067 [5] Deng, S., Homogeneous Finsler Spaces, Springer Science+Business Media, New York, 2012 · Zbl 1253.53002 [6] Dušek, Z., Explicit geodesic graphs on some H-type groups, Rend. Circ. Mat. Palermo, Serie II, Suppl. 69 (2002), 77-88 · Zbl 1025.53019 [7] Dušek, Z., Structure of geodesics in the flag manifold \({\rm SO}(7)/{\rm U}(3)\), Differential Geometry and its Applications, Proc. 10th Int. Conf. (Kowalski, O., Krupka, D., Krupková, O., Slovák, J., eds.), World Scientific, 2008, pp. 89-98 · Zbl 1216.53046 [8] Dušek, Z., Homogeneous geodesics and g.o. manifolds, Note Mat. 38 (2018), 1-15 · Zbl 1401.53041 [9] Dušek, Z., Geodesic graphs in Randers g.o. spaces, Comment. Math. Univ. Carolin. 61 (2) (2020), 195-211 [10] Dušek, Z.; Kowalski, O., Geodesic graphs on the \(13\)-dimensional group of Heisenberg type, Math. Nachr. 254-255 (2003), 87-96 · Zbl 1019.22004 [11] Gordon, C. S.; Nikonorov, Yu. G., Geodesic orbit Riemannian structures on \(\mathbb{R}^n\), J. Geom. Phys. 134 (2018), 235-243 · Zbl 1407.53032 [12] Kowalski, O.; Nikčević, S., On geodesic graphs of Riemannian g.o. spaces, Arch. Math. 73 (1999), 223-234, Appendix: Arch. Math. 79 (2002), 158-160 · Zbl 0940.53027 [13] Kowalski, O.; Vanhecke, L., Riemannian manifolds with homogeneous geodesics, Boll. Un. Math. Ital. B(7) 5 (1991), 189-246 · Zbl 0731.53046 [14] Latifi, D., Homogeneous geodesics in homogeneous Finsler spaces, J. Geom. Phys. 57 (2007), 1421-1433 · Zbl 1113.53048 [15] Lauret, J., Modified H-type groups and symmetric-like Riemannian spaces, Differential Geom. Appl. 10 (1999), 121-143 · Zbl 0942.53034 [16] Riehm, C., Explicit spin representations and Lie algebras of Heisenberg type, J. London Math. Soc. (2) 32 (1985), 265-271 [17] Szenthe, J., Sur la connection naturelle à torsion nulle, Acta Sci. Math. (Szeged) 38 (1976), 383-398 · Zbl 0321.53029 [18] Yan, Z.; Deng, S., Finsler spaces whose geodesics are orbits, Differential Geom. Appl. 36 (2014), 1-23 · Zbl 1308.53114 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.