Squarefree monomial ideals with maximal depth. (English) Zbl 1513.13032

Summary: Let \((R,\mathfrak{m})\) be a Noetherian local ring and \(M\) a finitely generated \(R\)-module. We say \(M\) has maximal depth if there is an associated prime \(\mathfrak{p}\) of \(M\) such that depth \(M=\dim R/\mathfrak{p}\). In this paper we study squarefree monomial ideals which have maximal depth. Edge ideals of cycle graphs, transversal polymatroidal ideals and high powers of connected bipartite graphs with this property are classified.


13C15 Dimension theory, depth, related commutative rings (catenary, etc.)
05E40 Combinatorial aspects of commutative algebra
Full Text: DOI arXiv


[1] Brodmann, M., Asymptotic stability of Ass \((M/I^n M)\), Proc. Am. Math. Soc. 74 (1979), 16-18 · Zbl 0395.13008 · doi:10.2307/2042097
[2] Bruns, W.; Herzog, J., Cohen-Macaulay Rings, Cambridge Studies in Advanced Mathematics 39, Cambridge University Press, Cambridge (1998) · Zbl 0909.13005 · doi:10.1017/cbo9780511608681
[3] Faridi, S., Simplicial trees are sequentially Cohen-Macaulay, J. Pure Appl. Algebra 190 (2004), 121-136 · Zbl 1045.05029 · doi:10.1016/j.jpaa.2003.11.014
[4] Francisco, C. A.; Hà, H. T., Whiskers and sequentially Cohen-Macaulay graphs, J. Comb. Theory, Ser. A 115 (2008), 304-316 · Zbl 1142.13021 · doi:10.1016/j.jcta.2007.06.004
[5] Frühbis-Krüger, A.; Terai, N., Bounds for the regularity of monomial ideals, Mathematiche, Suppl. 53 (1998), 83-97 · Zbl 0951.13017
[6] Herzog, J.; Hibi, T., Monomial Ideals, Graduate Texts in Mathematics 260, Springer, London (2011) · Zbl 1206.13001 · doi:10.1007/978-0-85729-106-6
[7] Herzog, J.; Rauf, A.; Vladoiu, M., The stable set of associated prime ideals of a polymatroidal ideal, J. Algebr. Comb. 37 (2013), 289-312 · Zbl 1258.13014 · doi:10.1007/s10801-012-0367-z
[8] Jacques, S., Betti Numbers of Graph Ideals: Ph.D. Thesis, University of Sheffield, Sheffield (2004), Available at https://arxiv.org/abs/math/0410107\kern0pt
[9] Lam, H. M.; Trung, N. V., Associated primes of powers of edge ideals and ear decompositions of graphs, Trans. Am. Math. Soc. 372 (2019), 3211-3236 · Zbl 1420.13023 · doi:10.1090/tran/7662
[10] Martínez-Bernal, J.; Morey, S.; Villarreal, R. H., Associated primes of powers of edge ideals, Collect. Math. 63 (2012), 361-374 · Zbl 1360.13027 · doi:10.1007/s13348-011-0045-9
[11] Miller, E.; Sturmfels, B.; Yanagawa, K., Generic and cogeneric monomial ideals, J. Symb. Comput. 29 (2000), 691-708 · Zbl 0955.13008 · doi:10.1006/jsco.1999.0290
[12] Rahimi, A., Maximal depth property of finitely generated modules, J. Algebra Appl. 17 (2018), Article ID 1850202, 12 pages · Zbl 1409.13023 · doi:10.1142/S021949881850202X
[13] Villarreal, R. H., Monomial Algebras, Monographs and Research Notes in Mathematics, CRC Press, Boca Raton (2015) · Zbl 1325.13004 · doi:10.1201/b18224
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.