×

zbMATH — the first resource for mathematics

Tridiagonal matrices and spectral properties of some graph classes. (English) Zbl 07285984
Summary: A graph is called a chain graph if it is bipartite and the neighbourhoods of the vertices in each colour class form a chain with respect to inclusion. In this paper we give an explicit formula for the characteristic polynomial of any chain graph and we show that it can be expressed using the determinant of a particular tridiagonal matrix. Then this fact is applied to show that in a certain interval a chain graph does not have any nonzero eigenvalue. A similar result is provided for threshold graphs.

MSC:
05C50 Graphs and linear algebra (matrices, eigenvalues, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aguilar, C. O.; Lee, J.-Y.; Piato, E.; Schweitzer, B. J., Spectral characterizations of anti-regular graphs, Linear Algebra Appl. 557 (2018), 84-104
[2] Alazemi, A.; elić, M. Anđ; Simić, S. K., Eigenvalue location for chain graphs, Linear Algebra Appl. 505 (2016), 194-210
[3] elić, M. Anđ; Andrade, E.; Cardoso, D. M.; Fonseca, C. M. da; Simić, S. K.; Tošić, D. V., Some new considerations about double nested graphs, Linear Algebra Appl. 483 (2015), 323-341
[4] elić, M. Anđ; Fonseca, C. M. da, Sufficient conditions for positive definiteness of tridiagonal matrices revisited, Positivity 15 (2011), 155-159 \99999DOI99999 10.1007/s11117-010-0047-y \goodbreak
[5] elić, M. Anđ; Ghorbani, E.; Simić, S. K., Vertex types in threshold and chain graphs, Discrete Appl. Math. 269 (2019), 159-168
[6] elić, M. Anđ; Simić, S. K.; Živković, D.; Dolićanin, E. Ć., Fast algorithms for computing the characteristic polynomial of threshold and chain graphs, Appl. Math. Comput. 332 (2018), 329-337
[7] Cvetković, D.; Rowlinson, P.; Simić, S., An Introduction to the Theory of Graph Spectra, London Mathematical Society Student Texts 75, Cambridge University Press, Cambridge (2010)
[8] Fonseca, C. M. da, On the eigenvalues of some tridiagonal matrices, J. Comput. Appl. Math. 200 (2007), 283-286
[9] Ghorbani, E., Eigenvalue-free interval for threshold graphs, Linear Algebra Appl. 583 (2019), 300-305
[10] Jacobs, D. P.; Trevisan, V.; Tura, F., Eigenvalues and energy in threshold graphs, Linear Algebra Appl. 465 (2015), 412-425
[11] Lazzarin, J.; Márquez, O. F.; Tura, F. C., No threshold graphs are cospectral, Linear Algebra Appl. 560 (2019), 133-145
[12] Maybee, J. S.; Olesky, D. D.; Driessche, P. van den; Wiener, G., Matrices, digraphs, and determinants, SIAM J. Matrix Anal. Appl. 10 (1989), 500-519
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.