zbMATH — the first resource for mathematics

Recollement of colimit categories and its applications. (English) Zbl 07285986
Summary: We give an explicit recollement for a cocomplete abelian category and its colimit category. We obtain some applications on Leavitt path algebras, derived equivalences and \(K\)-groups.
18A30 Limits and colimits (products, sums, directed limits, pushouts, fiber products, equalizers, kernels, ends and coends, etc.)
19D50 Computations of higher \(K\)-theory of rings
Full Text: DOI
[1] Abrams, G.; Pino, G. Aranda, The Leavitt path algebra of a graph, J. Algebra 293 (2005), 319-334
[2] Hügel, L. Angeleri; Koenig, S.; Liu, Q., Recollements and tilting objects, J. Pure Appl. Algebra 215 (2011), 420-438
[3] Ara, P.; Moreno, M. A.; Pardo, E., Nonstable \(K\)-theory for graph algebras, Algebr. Represent. Theory 10 (2007), 157-178
[4] Asadollahi, J.; Hafezi, R.; Vahed, R., On the recollements of functor categories, Appl. Categ. Struct. 24 (2016), 331-371
[5] Barot, M.; Lenzing, H., One-point extensions and derived equivalence, J. Algebra 264 (2003), 1-5
[6] Beilinson, A. A.; Bernstein, J.; Deligne, P., Faisceaux pervers, Analysis and Topology on Singular Spaces I Astérisque 100. Société Mathématique de France, Paris (1982), 5-171 French
[7] Bergman, G. M., Direct limits and fixed point sets, J. Algebra 292 (2005), 592-614
[8] Chen, Q.; Lin, Y., Recollements of extension algebras, Sci. China, Ser. A 46 (2003), 530-537
[9] Cline, E.; Parshall, B.; Scott, L., Algebraic stratification in representation categories, J. Algebra 117 (1988), 504-521
[10] Franjou, V.; Pirashvili, T., Comparison of abelian categories recollements, Doc. Math. 9 (2004), 41-56
[11] Fuchs, L.; Göbel, R.; Salce, L., On inverse-direct systems of modules, J. Pura Appl. Algebra 214 (2010), 322-331
[12] Grothendieck, A., Groupes de classes des categories abeliennes et triangulees. Complexes parfaits, Séminaire de Géométrie Algébrique du Bois-Marie 1965-66 SGA 5 Lecture Notes in Mathematics 589. Springer, Berlin (1977), 351-371 French
[13] Guo, X. J.; Li, L. B., \(K_1\) group of finite dimensional path algebra, Acta Math. Sin., Engl. Ser. 17 (2001), 273-276
[14] Happel, D., Reduction techniques for homological conjectures, Tsukuba J. Math. 17 (1993), 115-130
[15] Li, L. P., Derived equivalences between triangular matrix algebras, Commun. Algebra 46 (2018), 615-628
[16] Mahmood, S. J., Limimts and colimits in categories of d. g. near-rings, Proc. Edinb. Math. Soc., II. Ser. 23 (1980), 1-7
[17] Miyachi, J., Localization of triangulated categories and derived categories, J. Algebras 141 (1991), 463-483
[18] Parshall, B. J.; Scott, L. L., Derived categories, quasi-hereditary algebras, and algebraic groups, Proceedings of the Ottawa-Moosonee Workshop in Algebra Mathematical Lecture Note Series. Carlton University, Ottawa (1988), 1-104
[19] Quillen, D., Higher algebraic \(K\)-theory. I, Higher \(K\)-Theories Lecture Notes in Mathematics 341. Springer, Berlin (1973)
[20] Xue, R.; Yan, Y.; Chen, Q., On colimit-categories, J. Math., Wuhan Univ. 32 (2012), 439-446
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.