×

zbMATH — the first resource for mathematics

Global robust output regulation of a class of nonlinear systems with nonlinear exosystems. (English) Zbl 07286047
Summary: An adaptive output regulation design method is proposed for a class of output feedback systems with nonlinear exosystem and unknown parameters. A new nonlinear internal model approach is developed in the present study that successfully converts the global robust output regulation problem into a robust adaptive stabilization problem for the augmented system. Moreover, an output feedback controller is achieved based on a type of state filter which is designed for the transformed augmented system. The adaptive control technique is successfully introduced to the stabilization design to ensure the global stability of the closed-loop system. The result can successfully apply to a tracking control problem associated with the well known Van der Pol oscillator.
MSC:
93D21 Adaptive or robust stabilization
93D15 Stabilization of systems by feedback
93C10 Nonlinear systems in control theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bodson, M.; Douglas, S. C., Adaptive algorithms for the rejection of sinusoidal disturbances with unknown frequencies., Automatica 33 (1997), 2213-2221
[2] Byrnes, C. I.; Isidori, A., Nonlinear internal model for output regulation., IEEE Trans. Automat. Control 49 (2004), 2244-2247
[3] Chen, C.; Ding, Z.; Lennox, B., Rejection of nonharmonic disturbances innonlinear systems with semi-global stability., IEEE Trans. Circuits Systems, II: Express Briefs 55 (2008), 1289-1293
[4] Chen, Z.; Huang, J., Robust output regulation with nonlinear exosystems., Automatica 41 (2005), 1447-1454
[5] Ding, Z., Semi-global stabilization of a class of non-minimum phase nonlinear output feedback systems., IEE Proc. Control Theory Appl. 152 (2005), 4, 460-464
[6] Ding, Z., Output regulation of uncertain nonlinear systems with nonlinear exosystems., IEEE Trans. Automat. Control 51 (2006), 498-503
[7] Ding, Z., Asymptotic rejection of unknown sinusoidal disturbances in nonlinear systems., Automatica 43 (2007), 174-177
[8] Ding, Z., Decentralized output regulation of large scale nonlinear systems with delay., Kybernetika 45 (2009), 33-48
[9] Huang, X.; Khalil, H. K.; Song, Y., Regulation of non-minimum-phase nonlinear systems using slow integrators and high-gain feedback., IEEE Trans. Automat. Control 64 (2019), 2, 640-653
[10] Huang, J.; Rugh, W. J., On a nonlinear multivariable servomenchanism problem., Automatica 26 (1990), 963-972
[11] Isidori, A., Global almost disturbance decoupling with stability for non-minimum phase single-input single-output nonlinear systems., Systems Control Lett. 28 (1996), 2, 115-122
[12] Isidori, A., A tool for semiglobal stabilization of uncertain non-minimum phase nonlinear systems via output feedback., IEEE Trans. Automat. Control 45 (2000), 10, 1817-1827
[13] Isidori, A., Nonlinear Control Systems., Springer-Verlag, Berlin 2013
[14] Isidori, A.; Byrnes, C. I., Output regulation of nonlinear systems., IEEE Trans. Automat. Control 35 (1990), 131-140
[15] Isidori, A.; Marconi, L.; Serrani, A., New results on semiglobal output regulation of non-minimum phase nonlinear systems., In: Proc. 41st IEEE Conference on Decision and Control, Las Vegas 2002, pp. 1467-1472
[16] Isidori, A.; Marconi, L.; Serrani, A., Observability conditions for the semiglobal output regulation of non-minimum phase nonlinear systems., In: Proc. 42nd IEEE Conference on Decision and Control, Maui 2003, pp. 55-60
[17] Jiang, Y., Rejection of nonharmonic disturbances in the nonlinear system via the internal model approach., J. Vibration Control 13 (2011), 6, 1916-1921
[18] Jiang, Y.; Dai, J. Y., Adaptive output regulation of a class of nonlinear output feedback systems with unknown high frequency gain., IEEE/CAA J. Autom. Sinica 7 (2020), 2, 568-574
[19] Jiang, Y.; Liu, S., Rejection of nonharmonic disturbances in a class of nonlinear systems with nonlinear exosystems., Asian J. Control 18(2011), 12, 858-867
[20] Jiang, Y.; Liu, S. T.; Wang, R. L., Rejection of nonharmonic disturbances for a class of uncertain nonlinear systems with nonlinear exosystems., Science China (Inform. Sci.) 56(2013), 3, 1-12
[21] Karagiannisa, D.; Jiang, Z.; Ortegac, R.; al, et, Output-feedback stabilization of a class of uncertain non-minimum phase nonlinear systems., Automatica 41 (2005), 9, 1609-1615
[22] Marco, S. D.; Marconi, L.; Mahony, R.; Hamel, T., Output regulation for systems on matrix lie-groups., Automatica 87 (2018), 8-16
[23] Marino, R.; Tomei, P., Global adaptive output feedback control of nonlinear systems, part i: Linear parameterization., IEEE Trans. Automat. Control 38 (1993), 17-32
[24] Nazrulla, S.; Khalil, H. K., Output regulation of non-minimum phase nonlinear systems using an extended high-gain observer., In: IEEE International Conference on Control Automation, IEEE, 2010
[25] Nazrulla, S.; Khalil, H. K., Robust stabilization of non-minimum phase nonlinear systems using extended high-gain observers., IEEE Trans. Automat. Control 56 (2011), 4, 802-813
[26] Ramos, L. E.; Čelikovský, S.; Kučera, V., Generalized output regulation problem for a class of nonlinear systems with nonautonomous exosystem., IEEE Trans. Automat. Control 49 (2004), 1737-1742
[27] Rehák, B.; Čelikovský, S.; Ruiz-León, J.; Orozco-Mora, J., A comparison of two fem-based methods for the solution of the nonlinear output regulation problem., Kybernetika 45 (2009), 427-444
[28] Tornambe, A., Output feedback stabilization of a class of non-minimum phase nonlinear systems., Systems Control Lett. 19(1992), 3, 193-204
[29] Trinh, N. T.; Andrieu, V.; Xu, C. Z., Output regulation for a cascaded network of \(2 \times 2\) hyperbolic systems with PI controller., Automatica 91 (2018), 270-278
[30] Wang, L.; Isidori, A.; Liu, Z. T.; Su, H. Y., Robust output regulation for invertible nonlinear MIMO systems., Automatica 82 (2017), 278-286
[31] Xi, Z.; Ding, Z., Global adaptive output regulation of a class of nonlinear systems with nonlinear exosystems., Automatica 43 (2007), 143-149
[32] Xu, D.; Wang, X.; Chen, Z., Output regulation of nonlinear output feedback systems with exponential parameter convergence., Systems Control Lett. 88 (2016), 81-90
[33] Zattoni, E.; Perdon., A. M.; Conte, G., Output regulation by error dynamic feedback in hybrid systems with periodic state jumps., Automatica 50 (2017), 1, 322-334
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.