×

zbMATH — the first resource for mathematics

Brauer trees of unipotent blocks. (English) Zbl 07286824
Summary: In this paper we complete the determination of the Brauer trees of unipotent blocks (with cyclic defect groups) of finite groups of Lie type. These trees were conjectured by the first author in [19]. As a consequence, the Brauer trees of principal \(\ell \)-blocks of finite groups are known for \(\ell > 71\).
MSC:
20C33 Representations of finite groups of Lie type
20C20 Modular representations and characters
Software:
CHEVIE
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bonnafé, C., Dat, J.-F., Rouquier, R.: Derived categories and Deligne-Lusztig varieties II. Ann. of Math.185, 609-670 (2017)Zbl 06701140 MR 3612005 · Zbl 06701140
[2] Bonnafé, C., Michel, J.: Computational proof of the Mackey formula forq >2. J. Algebra 327, 506-526 (2011)Zbl 1231.20041 MR 2746047 · Zbl 1231.20041
[3] Bonnafé, C., Rouquier, R.: Catégories dérivées et variétés de Deligne-Lusztig. Publ. Math. Inst. Hautes Études Sci.97, 1-59 (2003)Zbl 1054.20024 MR 2010739 · Zbl 1054.20024
[4] Bonnafé, C., Rouquier, R.: Coxeter orbits and modular representations. Nagoya Math. J.183, 1-34 (2006)Zbl 1109.20038 MR 2253885 · Zbl 1109.20038
[5] Brauer, R.: Investigations on group characters. Ann. of Math.42, 936-958 (1941) Zbl 0061.03702 MR 0005731 · Zbl 0061.03702
[6] Broué, M.: Isométries parfaites, types de blocs, catégories dérivées. Astérisque181-182, 61- 92 (1990)Zbl 0704.20010 MR 1051243
[7] Broué, M., Malle, G.: Théorèmes de Sylow génériques pour les groupes réductifs sur les corps finis. Math. Ann.292, 241-262 (1992)Zbl 0820.20057 MR 1149033 · Zbl 0820.20057
[8] Broué, M., Malle, G., Michel, J.: Generic blocks of finite reductive groups. Astérisque212, 7-92 (1993)Zbl 0843.20012 MR 1235832 · Zbl 0843.20012
[9] Broué, M., Malle, G., Michel, J.: Towards spetses. I. Transform. Groups4, 157-218 (1999) Zbl 0972.20024 MR 1712862 · Zbl 0972.20024
[10] Broué, M., Michel, J.: Blocs et séries de Lusztig dans un groupe réductif fini. J. Reine Angew. Math.395, 56-67 (1989)Zbl 0654.20048 MR 0983059 · Zbl 0654.20048
[11] Broué, M., Michel, J.: Blocs à groupe de défaut abélien. Astérisque212, 93-117 (1993) Zbl 0832.20024 MR 1235833 · Zbl 0832.20024
[12] Brunat, O.: The Shintani descents of Suzuki groups and their consequences. J. Algebra303, 869-890 (2006)Zbl 1105.20011 MR 2255141 · Zbl 1105.20011
[13] Burkhardt, R.: Über die Zerlegungszahlen der Suzukigruppen Sz(q). J. Algebra59, 421-433 (1979)Zbl 0413.20008 MR 0543261 · Zbl 0413.20008
[14] Cabanes, M., Enguehard, M.: Unipotent blocks of finite reductive groups of a given type. Math. Z.213, 479-490 (1993)Zbl 0795.20021 MR 1227495 · Zbl 0795.20021
[15] Cabanes, M., Enguehard, M.: On unipotent blocks and their ordinary characters. Invent. Math. 117, 149-164 (1994)Zbl 0817.20046 MR 1269428 · Zbl 0817.20046
[16] Cabanes, M., Enguehard, M.: Representation Theory of Finite Reductive Groups. Cambridge Univ. Press (2004)Zbl 1069.20032 MR 2057756 · Zbl 1069.20032
[17] Chuang, J., Rouquier, R.: Perverse equivalences and Calabi-Yau algebras. In preparation · Zbl 1144.20001
[18] Cooperman, G., Hiß, G., Lux, K., Müller, J.: The Brauer tree of the principal 19-block of the sporadic simple Thompson group. Experiment. Math.6, 293-300 (1997)Zbl 1115.20307 MR 1606916 · Zbl 1115.20307
[19] Craven, D.: Perverse equivalences and Broué’s conjecture II: The cyclic case. Submitted · Zbl 1310.20013
[20] Curtis, C. W., Reiner, I.: Methods of Representation Theory, Vol. II. Wiley, 1987. Zbl 0616.20001 MR 0892316 · Zbl 0616.20001
[21] Dade, E. C.: Blocks with cyclic defect groups. Ann. of Math.84, 20-48 (1966) Zbl 0163.27202 MR 0200355 · Zbl 0163.27202
[22] Deligne, P., Lusztig, G.: Duality for representations of a reductive group over a finite field, II. J. Algebra81, 540-545 (1983)Zbl 0535.20020 MR 0700298 · Zbl 0535.20020
[23] Digne, F., Michel, J.: Representations of Finite Groups of Lie Type. Cambridge Univ. Press (1991)Zbl 0815.20014 MR 1118841 · Zbl 0815.20014
[24] Digne, F., Michel, J.: Groupes réductifs non connexes. Ann. Sci. École Norm. Sup.27, 345- 406 (1994)Zbl 0846.20040 MR 1272294 · Zbl 0846.20040
[25] Digne, F., Michel, J., Rouquier, R.: Cohomologie des variétés de Deligne-Lusztig. Adv. Math. 209, 749-822 (2007)Zbl 1118.20006 MR 2296313 · Zbl 1118.20006
[26] Dipper, R.: On quotient of Hom-functors and representations of finite general linear groups. I. J. Algebra130, 235-259 (1990)Zbl 0698.20005 MR 1045747 · Zbl 0698.20005
[27] Dudas, O.: Deligne-Lusztig restriction of a Gelfand-Graev module. Ann. Sci. École Norm. Sup.42, 653-674 (2009)Zbl 1185.14039 MR 2568878 · Zbl 1185.14039
[28] Dudas, O.: Coxeter orbits and Brauer trees. Adv. Math.229, 3398-3435 (2012) Zbl 1269.20039 MR 2900443 · Zbl 1269.20039
[29] Dudas, O.: Coxeter orbits and Brauer trees II. Int. Math. Res. Notices2014, 4100-4123 Zbl 1304.20060 MR 3244921 · Zbl 1304.20060
[30] Dudas, O., Rouquier, R.: Coxeter orbits and Brauer trees III. J. Amer. Math. Soc.27, 1117- 1145 (2014)Zbl 1307.20010 MR 3230819 · Zbl 1307.20010
[31] Enguehard, M.: Sur les‘-blocs des groupes réductifs finis quand‘est mauvais. J. Algebra 230, 334-377 (2000)Zbl 0964.20020 MR 1775796 · Zbl 0964.20020
[32] Feit, W.: Possible Brauer trees. Illinois J. Math.28, 43-56 (1984)Zbl 0538.20006 MR 0730710 · Zbl 0538.20006
[33] Feit,W.:TheRepresentationTheoryofFiniteGroups.North-Holland(1982) Zbl 0493.20007 MR 0661045
[34] Fong, P., Harris, M.: On perfect isometries and isotypies in finite groups. Invent. Math.114, 139-191 (1993)Zbl 0811.20009 MR 1235022 · Zbl 0811.20009
[35] Fong, P., Srinivasan, B.: Brauer trees in GLn(q). Math. Z.187, 81-88 (1984)Zbl 0545.20006 MR 0753422 · Zbl 0545.20006
[36] Fong, P., Srinivasan, B.: Brauer trees in classical groups. J. Algebra131, 179-225 (1990) Zbl 0704.20011 MR 1055005 · Zbl 0704.20011
[37] Geck, M.: Verallgemeinerte Gelfand-Graev Charaktere und Zerlegungszahlen endlicher Gruppen. Dissertation, Aachen (1990)Zbl 0729.20005 · Zbl 0729.20005
[38] Geck, M.: Generalized Gelfand-Graev characters for Steinberg’s triality groups and their applications. Comm. Algebra19, 3249-3269 (1991)Zbl 0756.20001 MR 1135627 · Zbl 0756.20001
[39] Geck, M.: Brauer trees of Hecke algebras. Comm. Algebra20, 2937-2973 (1992) Zbl 0770.20020 MR 1179271 · Zbl 0770.20020
[40] Geck, M.: Kazhdan-Lusztig cells and decomposition numbers. Represent. Theory2, 264-277 (1998)Zbl 0901.20004 MR 1628035 · Zbl 0901.20004
[41] Geck, M.: Character values, Schur indices and character sheaves. Represent. Theory7, 19-55 (2003)Zbl 1065.20019 MR 1973366 · Zbl 1065.20019
[42] Geck, M., Hiss, G., Malle, G.: Cuspidal unipotent Brauer characters. J. Algebra168, 182-220 (1994)Zbl 0840.20034 MR 1289097 · Zbl 0840.20034
[43] Geck, M., Pfeiffer, G.: On the irreducible characters of Hecke algebras. Adv. Math.102, 79- 94 (1993)Zbl 0816.20034 MR 1250466 · Zbl 0816.20034
[44] Geck, M., Pfeiffer, G.: Characters of Finite Coxeter Groups and Iwahori-Hecke Algebras. Clarendon Press, Oxford Univ. Press (2000)Zbl 0996.20004 MR 1778802 · Zbl 0996.20004
[45] Geck, M., G. Pfeiffer, Kim, S.: Minimal length elements in twisted conjugacy classes of finite Coxeter groups. J. Algebra229, 570-600 (2000)Zbl 1042.20026 MR 1769289 · Zbl 1042.20026
[46] Hiss, G.: Regular and semisimple blocks of finite reductive groups. J. London Math. Soc.41, 63-68 (1990)Zbl 0661.20030 MR 1063543 · Zbl 0661.20030
[47] Hiss, G.: The Brauer trees of the Ree groups. Comm. Algebra19, 871-888 (1991) Zbl 0798.20010 MR 1102991 · Zbl 0798.20010
[48] Hiss, G., Lübeck, F.: The Brauer trees of the exceptional Chevalley groups of typesF4and 2 · Zbl 0897.20010
[49] Hiss, G., Lübeck, F., Malle, G.: The Brauer trees of the exceptional Chevalley groups of type E6. Manuscripta Math.87, 131-144 (1995)Zbl 0846.20017 MR 1329444 · Zbl 0846.20017
[50] Hiss, G., Lux, K.: Brauer Trees of Sporadic Groups. Oxford Univ. Press (1989) Zbl 0685.20013 MR 1033265 · Zbl 0685.20013
[51] Humphreys, J. E.: Reflection Groups and Coxeter Groups. Cambridge Univ. Press (1990) Zbl 0725.20028 MR 1066460 · Zbl 0725.20028
[52] Linckelmann, M.: Le centre d’un bloc à groupes de défaut cycliques. C. R. Acad. Sci. Paris 306, 727-730 (1988)Zbl 0643.20007 MR 0948304 · Zbl 0643.20007
[53] Linckelmann, M.: Trivial source bimodule rings for blocks andp-permutation equivalences. Trans. Amer. Math. Soc.361, 1279-1316 (2009)Zbl 1173.20005 MR 2457399 · Zbl 1173.20005
[54] Lusztig, G.: Representations of Finite Chevalley Groups. CBMS Reg. Conf. Ser. Math. 39, Amer. Math. Soc. (1978)Zbl 0418.20037 MR 0518617 · Zbl 0418.20037
[55] Lusztig, G.: Coxeter orbits and eigenspaces of Frobenius. Invent. Math.38, 101-159 (1976) Zbl 0366.20031 MR 0453885 · Zbl 0366.20031
[56] Lusztig, G.: Homology bases arising from reductive groups over a finite field. In: Algebraic Groups and Their Representations (Cambridge, 1997), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 517, Kluwer, 53-72 (1998)Zbl 0930.20041 MR 1670764 · Zbl 0930.20041
[57] Lusztig, G.: Rationality properties of unipotent representations. J. Algebra258, 1-22 (2002) Zbl 1141.20300 MR 1670764 · Zbl 1141.20300
[58] Lusztig, G., Spaltenstein, N.: Induced unipotent classes. J. London Math. Soc.19, 41-52 (1979)Zbl 0407.20035 MR 0527733 · Zbl 0407.20035
[59] Malle, G.: Die unipotenten Charaktere von2F4(q2). Comm. Algebra18, 2361-2381 (1990) Zbl 0721.20008 MR 1063140 · Zbl 0721.20008
[60] Malle, G., Testerman, D.: Linear Algebraic Groups and Finite Groups of Lie Type. Cambridge Univ. Press (2011)Zbl 1256.20045 MR 2850737 · Zbl 1256.20045
[61] Michel, J.: The development version of the CHEVIE package of GAP3. J. Algebra435, 308- 336 (2015)Zbl 1322.20002 MR 3343221 · Zbl 1322.20002
[62] Müller, J.: Brauer trees for the Schur cover of the symmetric group. J. Algebra266, 427-445 (2003)Zbl 1068.20016 MR 1995123 · Zbl 1068.20016
[63] Rouquier, R.: Complexes de chaînes étales et courbes de Deligne-Lusztig. J. Algebra257, 482-508 (2002)Zbl 1030.18008 MR 1947973 · Zbl 1030.18008
[64] Shamash, J.: Brauer trees for blocks of cyclic defect in the groupsG2(q)for primes dividing q2±q+1. J. Algebra123, 378-396 (1989)Zbl 0674.20004 MR 1000493 · Zbl 0674.20004
[65] Ward, H. N.: On Ree’s series of simple groups. Trans. Amer. Math. Soc.121, 62-89 (1966) Zbl 0139.24902 MR 0197587 · Zbl 0139.24902
[66] Wings, E.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.