Canonical representation of polynomial expressions with indices. (English. Russian original) Zbl 1455.68289

Program. Comput. Softw. 45, No. 2, 81-87 (2019); translation from Programmirovanie 45, No. 2, 66-72 (2019).
Summary: Computer algebra methods are widely employed in various branches of mathematics, physics, and other sciences. Simplification of algebraic expressions with indices is one of the important problems. Tensor expressions are the most typical example of these expressions. This paper briefly describes some basic methods for reducing expressions with indices to canonical form. The focus is placed on taking into account the properties of symmetries with respect to various permutations of indices in elementary symbols, symmetries associated with renaming summation indices, and general linear relationships among them. This paper also gives a definition of canonical representation for polynomial (multiplicative) expressions of variables with abstract indices that results from averaging the initial expression over the action of some finite group (signature stabilizer). In practice, e.g., for expressions of Riemann curvature tensors, the proposed algorithms show high efficiency.


68W30 Symbolic computation and algebraic computation
Full Text: DOI


[1] Martin-Garcia, J.M., Yllanesa, D., and Portugal, R., The Invar tensor package: Differential invariants of Riemann, Comput. Phys. Commun., 2008, vol. 179, p. 597. · Zbl 1197.15002
[2] Anderson, I.M. and Torre, C.G., New symbolic tools for differential geometry, gravitation, and field theory, J. Math. Phys., 2012, vol. 53, p. 013511. · Zbl 1273.83013
[3] GRTensorII. http://grtensor.phy.queensu.ca.
[4] Atlas 2. http://digi-area.com/Maple/atlas.
[5] xTerior. http://www.xact.es/xTerior/index.html.
[6] Gourgoulhon, E. and Mancini, M., Symbolic tensor calculus on manifolds, 2018. https://www.arxiv.org/abs /1804.07346v1.
[7] Abramov, S.A. and Bogolyubskaya, A.A., Seminar on computer algebra in 2016-2017, Programmirovanie, 2018, no. 2, pp. 3-4. http://www.ccas.ru/sabramov/ seminar/doku.php.
[8] Korol’kova, A.V., Kulyabov, D.S., and Sevast’yanov, L.A., Tensor computations in computer algebra systems, Program. Comput. Software, 2013, vol. 39, no. 3, pp. 135-142. · Zbl 1301.68280
[9] Toth, V., Tensor manipulation in GPL Maxima, 2008. http://www.vttoth.com.
[10] MAXIMA. http://www.maxima.sourceforge.net.
[11] Brewin, L., A brief introduction to Cadabra: A tool for tensor computations in general relativity, Comput. Phys. Commun., 2010, vol. 181, pp. 489-498. · Zbl 1206.83007
[12] Hearn, A.C. and Schöpf, R., REDUCE User’s Manual, Free Version. https://reduce-algebra.sourceforge. io/manual/manual.html.
[13] Poslavsky, S. and Bolotin, D., Redberry: A computer algebra system designed for tensor manipulation, J. Phys.: Conf. Ser., 2015, vol. 608, p. 012060.
[14] Li, H., Li, Z., and Li, Y., Riemann tensor polynomial canonicalization by graph algebra extension, Proc. Int. Symp. Symbolic and Algebraic Computation (ISSAC), Kaiserslautern, 2017, pp. 269-276.
[15] Rodionov, A.Y. and Taranov, A.Y., Combinatorial aspects of simplification of algebraic expressions, Lect. Notes Comput. Sci., 1989, vol. 378, pp. 192-201. · Zbl 1209.68694
[16] Butler, G., Computing normalizers in permutation groups, J. Algorithms, 1993, vol. 4, pp. 163-175. · Zbl 0552.20004
[17] Butler, G., On computing double coset representatives in permutation groups, Computational Group Theory, Atkinson, M.D., Ed., Academic, 1984. · Zbl 0577.20002
[18] Butler, G., Fundamental Algorithms for Permutation Groups, Berlin: Springer, 1991. · Zbl 0785.20001
[19] Slattery, M.C., Computing double cosets in soluble groups, J. Symbolic Comput., 2001, vol. 31, pp. 179-192. · Zbl 0987.20007
[20] Ilyin, V.A. and Kryukov, A.R., ATENSOR - REDUCE program for tensor simplification, Comput. Phys. Commun., 1996, vol. 96, pp. 36-52. · Zbl 0921.65035
[21] Martin-Garcia, J.M., Portugal, R., and Manssur, L.R.U., The Invar tensor package, Comput. Phys. Commun., 2007, vol. 177, pp. 640-648. · Zbl 1196.15006
[22] Bolotin, D. and Poslavsky, S., Introduction to Redberry: A computer algebra system designed for tensor manipulation, 2015. https://www.arxiv.org/pdf/1302.1219v2.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.