×

zbMATH — the first resource for mathematics

The open porous media flow reservoir simulator. (English) Zbl 07288710
Summary: The Open Porous Media (OPM) initiative is a community effort that encourages open innovation and reproducible research for simulation of porous media processes. OPM coordinates collaborative software development, maintains and distributes open-source software and open data sets, and seeks to ensure that these are available under a free license in a long-term perspective.
In this paper, we present OPM Flow, which is a reservoir simulator developed for industrial use, as well as some of the individual components used to make OPM Flow. The descriptions apply to the 2019.10 release of OPM.
MSC:
76M12 Finite volume methods applied to problems in fluid mechanics
76S05 Flows in porous media; filtration; seepage
76-04 Software, source code, etc. for problems pertaining to fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bastian, P.; Blatt, M.; Dedner, A.; Engwer, C.; Klöfkorn, R.; Ohlberger, M.; Sander, O., A generic grid interface for parallel and adaptive scientific computing. Part I: Abstract framework, Computing, 82, 2-3, 103-119 (2008) · Zbl 1151.65089
[2] Flemisch, B.; Darcis, M.; Erbertseder, K.; Faigle, B.; Lauser, A.; Mosthaf, K.; Müthing, S.; Nuske, P.; Tatomir, A.; Wolff, M.; Helmig, R., DuMux: DUNE for multi-phase, component, scale, physics,... flow and transport in porous media, Adv. Water Resour., 34, 9, 1102-1112 (2011)
[3] Boman, E. G.; Catalyurek, U. V.; Chevalier, C.; Devine, K. D., The Zoltan and Isorropia parallel toolkits for combinatorial scientific computing: Partitioning, ordering, and coloring, Sci. Program., 20, 2, 129-150 (2012)
[4] Lie, K.-A.; Krogstad, S.; Ligaarden, I. S.; Natvig, J. R.; Nilsen, H. M.; Skaflestad, B., Open-source MATLAB implementation of consistent discretisations on complex grids, Comput. Geosci., 16, 2, 297-322 (2011) · Zbl 1348.86002
[5] Krogstad, S.; Lie, K.-A.; Møyner, O.; Nilsen, H. M.; Raynaud, X.; Skaflestad, B., MRST-AD - an open-source framework for rapid prototyping and evaluation of reservoir simulation problems, (Reservoir Simulation Symposium, Houston, Texas, USA, 23-25 February (2015))
[6] Lie, K.-A., An Introduction to Reservoir Simulation Using MATLAB/GNU Octave: User Guide for the MATLAB Reservoir Simulation Toolbox (MRST) (2019), Cambridge University Press · Zbl 1425.76001
[7] Møyner, O.; Krogstad, S.; Lie, K.-A., The application of flow diagnostics for reservoir management, SPE J., 20, 2, 306-323 (2014)
[8] Neidinger, R. D., Introduction to automatic differentiation and MATLAB object-oriented programming, SIAM Rev., 52, 3, 545-563 (2010) · Zbl 1196.65048
[9] Jansen, J., Adjoint-based optimization of multi-phase flow through porous media a review, Comput. & Fluids, 46, 1, 40-51 (2011), 10th ICFD Conference Series on Numerical Methods for Fluid Dynamics (ICFD 2010) · Zbl 1305.76107
[10] Baxendale, D.; Rasmussen, A. F.; Rustad, A. B.; Skille, T.; Sandve, T. H., OPM Flow Documentation Manual (2017), Open Porous Media Initiative, URL https://opm-project.org/?page_id=955
[11] Killough, J. E., Reservoir simulation with history-dependent saturation functions, SPE J., 16, 1, 37-48 (1976)
[12] Carlson, F. M., Simulation of relative permeability hysteresis to the non-wetting phase, (SPE Annual Technical Conference & Exhibition, San Antonio, Texas, USA (1981), Society of Petroleum Engineers)
[13] Holmes, J., Enhancements to the strongly coupled, fully implicit well model: wellbore crossflow modeling and collective well control, (SPE Reservoir Simulation Symposium (1983), Society of Petroleum Engineers)
[14] Holmes, J.; Barkve, T.; Lund, O., Application of a multisegment well model to simulate flow in advanced wells, (European Petroleum Conference (1998), Society of Petroleum Engineers)
[15] Fonseca, R. M.; Della Rossa, E.; Emerick, A. A.; Hanea, R. G.; Jansen, J. D., Overview of the Olympus field development optimization challenge, (ECMOR XVI-16th European Conference on the Mathematics of Oil Recovery (2018))
[16] Appleyard, J.; Cheshire, I. M., Nested factorization, (7th SPE Symposium on Reservoir Simulation, San Francisco, USA (1983), Society of Petroleum Engineers)
[17] Van der Vorst, H. A., Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 13, 2 (1992) · Zbl 0761.65023
[18] Saad, Y.; Schultz, M., GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7, 3 (1986) · Zbl 0599.65018
[19] Wallis, J., Incomplete Gaussian elimination as a preconditioning for generalized conjugate gradient acceleration, (7th SPE Symposium on Reservoir Simulation, San Francisco, USA (1983), Society of Petroleum Engineers)
[20] Scheichl, R.; Roland, M.; Wendebourg, J., Decoupling and block preconditioning for sedimentary basin simulations, Comput. Geosci., 7, 295-318 (2003) · Zbl 1076.76070
[21] Blatt, M., A Parallel Algebraic Multigrid Method for Elliptic Problems with Highly Discontinuous Coefficients (2010), Ruprecht-Karls-Universität Heidelberg, (Ph.D. thesis) · Zbl 1194.65002
[22] Blatt, M.; Bastian, P., The iterative solver template library, (Kågström, B.; Elmroth, E.; Dongarra, J.; Waśniewski, J., Applied Parallel Computing. State of the Art in Scientific Computing. Applied Parallel Computing. State of the Art in Scientific Computing, Lecture Notes in Computer Science, vol. 4699 (2007), Springer), 666-675
[23] Blatt, M.; Bastian, P., On the generic parallelisation of iterative solvers for the finite element method, Int. J. Comput. Sci. Engrg., 4, 1, 56-69 (2008)
[24] Balay, S., PETSc Users ManualTech. Rep. ANL-95/11 - Revision 3.11 (2019), Argonne National Laboratory
[25] Demidov, D., AMGCL: an efficient, flexible, and extensible algebraic multigrid implementation (2018), URL https://arxiv.org/abs/1811.05704 · Zbl 1452.65426
[26] Zhou, Y.; Tchelepi, H. A.; Mallison, B. T., Automatic differentiation framework for compositional simulation on unstructured grids with multi-point discretization schemes, (SPE Reservoir Simulation Symposium (2011), Society of Petroleum Engineers)
[27] Griewank, A.; Walther, A., Evaluating Derivatives, Principles and Techniques of Algorithmic Differentiation (2008), SIAM: SIAM Philadelphia · Zbl 1159.65026
[28] Sacado documentation website. URL https://docs.trilinos.org/dev/packages/sacado/doc/html/index.html.
[29] Walther, A.; Griewank, A., Getting started with ADOL-C, (Naumann, U.; Schenk, O., Combinatorial Scientific Computing (2012), Chapman-Hall CRC Computational Science), 181-202
[30] Younis, R.; Aziz, K., Parallel automatically differentiable data-types for next-generation simulator development. society of petroleum engineers, (SPE Reservoir Simulation Symposium (2007), Society of Petroleum Engineers)
[31] AD-GPRS website. URL https://supri-b.stanford.edu/research-areas/ad-gprs.
[32] Lauser, A.; Rasmussen, A.; Sandve, T.; Nilsen, H., Local forward-mode automatic differentiation for high performance parallel pilot-level reservoir simulation, (ECMOR XVI-16th European Conference on the Mathematics of Oil Recovery (2018))
[33] Bastian, P.; Blatt, M.; Dedner, A.; Engwer, C.; Klöfkorn, R.; Kornhuber, R.; Ohlberger, M.; Sander, O., A generic grid interface for parallel and adaptive scientific computing. Part II: Implementation and tests in DUNE, Computing, 82, 2-3, 121-138 (2008) · Zbl 1151.65088
[34] Boman, E. G.; Catalyurek, U. V.; Chevalier, C.; Devine, K. D., The Zoltan and Isorropia parallel toolkits for combinatorial scientific computing: Partitioning, ordering, and coloring, Sci. Program., 20, 2 (2012)
[35] Devine, K. D.; Boman, E. G.; Heaphy, R. T.; Bisseling, R. H.; Catalyurek, U. V., Parallel hypergraph partitioning for scientific computing, (Proceedings 20th IEEE International Parallel & Distributed Processing Symposium (2006), IEEE)
[36] Meier Yang, U., On the use of relaxation parameters in hybrid smoothers, Numer. Linear Algebra Appl., 11, 2-3, 155-172 (2004) · Zbl 1164.65361
[37] Todd, M.; Longstaff, W., The development, testing, and application of a numerical simulator for predicting miscible flood performance, J. Pet. Technol., 24, 07, 874-882 (1972)
[38] Chase, C. A.; Todd, M. R., Numerical simulation of CO_2 flood performance (includes associated papers 13950 and 13964), SPE J., 24, 06, 597-605 (1984)
[39] S. Jakupsstovu, D. Zhou, J. Kamath, L. Durlofsky, E.H. Stenby, Upscaling of miscible displacement processes, in: Proceedings of the 6th Nordic Symposium on Petrophysics, 2001, pp. 15-16.
[40] Odeh, A. S., Comparison of solutions to a three-dimensional black-oil reservoir simulation problem (includes associated paper 9741), J. Pet. Technol., 33, 01, 13-25 (1981)
[41] Kenyon, D., Third SPE comparative solution project: gas cycling of retrograde condensate reservoirs, SPE J., 39, 08, 981-997 (1987)
[42] Killough, J. E.; Kossack, C. A., Fifth comparison solution project: Evaluation of miscible flood simulators, (SPE Symposium on Reservoir Simulation (1987))
[43] Killough, J. E., Ninth SPE comparative solution project: a reexamination of black-oil simulation, (SPE Reservoir Simulation Symposium (1995), Society of Petroleum Engineers)
[44] Bao, K.; Lie, K.-A.; Møyner, O.; Liu, M., Fully implicit simulation of polymer flooding with MRST, Comput. Geosci., 21, 5, 1219-1244 (2017) · Zbl 1401.76130
[45] T.H. Sandve, A. Rasmussen, A.B. Rustad, Open reservoir simulator for CO2 storage and CO2-EOR, in: 14th Greenhouse Gas Control Technologies Conference Melbourne, 2018, pp. 21-26.
[46] Lorentzen, R.; Luo, X.; Bhakta, T.; Valestrand, R., History matching the full Norne field model using seismic and production data, SPE J., 24, 4, 1452-1467 (2019)
[47] Kvashchuk, A.; Klöfkorn, R.; Sandve, T. H., Comparison of higher order schemes on complicated meshes and reservoirs, (SPE Reservoir Simulation Conference (2019), Society of Petroleum Engineers)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.