FLEXI: a high order discontinuous Galerkin framework for hyperbolic-parabolic conservation laws. (English) Zbl 1461.76347

Summary: High order (HO) schemes are attractive candidates for the numerical solution of multiscale problems occurring in fluid dynamics and related disciplines. Among the HO discretization variants, discontinuous Galerkin schemes offer a collection of advantageous features which have lead to a strong increase in interest in them and related formulations in the last decade. The methods have matured sufficiently to be of practical use for a range of problems, for example in direct numerical and large eddy simulation of turbulence. However, in order to take full advantage of the potential benefits of these methods, all steps in the simulation chain must be designed and executed with HO in mind. Especially in this area, many commercially available closed-source solutions fall short. In this work, we therefore present the FLEXI framework, a HO consistent, open-source simulation tool chain for solving the compressible Navier-Stokes equations on CPU clusters. We describe the numerical algorithms and implementation details and give an overview of the features and capabilities of all parts of the framework. Beyond these technical details, we also discuss the important but often overlooked issues of code stability, reproducibility and user-friendliness. The benefits gained by developing an open-source framework are discussed, with a particular focus on usability for the open-source community. We close with sample applications that demonstrate the wide range of use cases and the expandability of FLEXI and an overview of current and future developments.


76M12 Finite volume methods applied to problems in fluid mechanics
76M20 Finite difference methods applied to problems in fluid mechanics
76N06 Compressible Navier-Stokes equations
76L05 Shock waves and blast waves in fluid mechanics
Full Text: DOI arXiv


[1] Silberman, I., Planetary waves in the atmosphere, J. Meteorol., 11, 1, 27-34 (1954)
[2] Orszag, S. A., Numerical methods for the simulation of turbulence, Phys. Fluids, 12, 12, II-250 (1969) · Zbl 0217.25803
[3] Dahlburg, R.; Picone, J., Pseudospectral simulation of compressible magnetohydrodynamic turbulence, Comput. Methods Appl. Mech. Engrg., 80, 1-3, 409-416 (1990) · Zbl 0722.76056
[4] Yokokawa, M.; Itakura, K.; Uno, A.; Ishihara, T.; Kaneda, Y., 16.4-Tflops direct numerical simulation of turbulence by a Fourier spectral method on the Earth Simulator, (SC’02: Proceedings of the 2002 ACM/IEEE Conference on Supercomputing (2002), IEEE), 50
[5] Dumbser, M.; Käser, M., Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems, J. Comput. Phys., 221, 2, 693-723 (2007) · Zbl 1110.65077
[6] Shu, C.-W., High-order finite difference and finite volume WENO schemes and discontinuous Galerkin methods for CFD, Int. J. Comput. Fluid Dyn., 17, 2, 107-118 (2003) · Zbl 1034.76044
[7] Svärd, M.; Carpenter, M. H.; Nordström, J., A stable high-order finite difference scheme for the compressible Navier-Stokes equations, far-field boundary conditions, J. Comput. Phys., 225, 1, 1020-1038 (2007) · Zbl 1118.76047
[8] Maday, Y.; Patera, A. T., Spectral element methods for the incompressible Navier-Stokes equations, (State-of-the-Art Surveys on Computational Mechanics (1989)), 71-143
[9] Bassi, F.; Rebay, S., A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations, J. Comput. Phys., 131, 2, 267-279 (1997) · Zbl 0871.76040
[10] Cockburn, B.; Karniadakis, G. E.; Shu, C.-W., Discontinuous Galerkin Methods: Theory, Computation and Applications, Vol. 11 (2012), Springer Science & Business Media
[11] Cantwell, C. D.; Moxey, D.; Comerford, A.; Bolis, A.; Rocco, G.; Mengaldo, G.; De Grazia, D.; Yakovlev, S.; Lombard, J.-E.; Ekelschot, D.; Jordi, B.; Xu, H.; Mohamied, Y.; Eskilsson, C.; Nelson, B.; Vos, P.; Biotto, C.; Kirby, R. M.; Sherwin, S. J., Nektar plus plus : An open-source spectral/hp element framework, Comput. Phys. Comm., 192, 205-219 (2015) · Zbl 1380.65465
[12] H. Klimach, K. Jain, S. Roller, End-to-end parallel simulations with APES, in: PARCO, 2013, pp. 703-711.
[13] Witherden, F. D.; Farrington, A. M.; Vincent, P. E., PyFR: An open source framework for solving advection-diffusion type problems on streaming architectures using the flux reconstruction approach, Comput. Phys. Comm., 185, 11, 3028-3040 (2014) · Zbl 1348.65005
[14] Hillewaert, K., Development of the Discontinuous Galerkin Method for High-Resolution, Large Scale CFD and Acoustics in Industrial Geometries (2013), Presses univ. de Louvain
[15] Gassner, G.; Kopriva, D. A., A comparison of the dispersion and dissipation errors of Gauss and Gauss-Lobatto discontinuous Galerkin spectral element methods, SIAM J. Sci. Comput., 33, 5, 2560-2579 (2011) · Zbl 1255.65089
[16] Moura, R. C.; Mengaldo, G.; Peiró, J.; Sherwin, S. J., On the eddy-resolving capability of high-order discontinuous Galerkin approaches to implicit LES/under-resolved DNS of Euler turbulence, J. Comput. Phys., 330, 615-623 (2017) · Zbl 1378.76036
[17] Drikakis, D.; Hahn, M.; Mosedale, A.; Thornber, B., Large eddy simulation using high-resolution and high-order methods, Phil. Trans. R. Soc. A, 367, 1899, 2985-2997 (2009) · Zbl 1185.76719
[18] Bassi, F.; Rebay, S., High-order accurate discontinuous finite element solution of the 2D Euler equations, J. Comput. Phys., 138, 2, 251-285 (1997) · Zbl 0902.76056
[19] M.J. Brazell, D.J. Mavriplis, High-order discontinuous Galerkin mesh resolved turbulent flow simulations of a NACA 0012 airfoil, in: 53rd AIAA Aerospace Sciences Meeting, 2015, p. 1529.
[20] A. Uranga, P.-O. Persson, M. Drela, J. Peraire, Implicit large eddy simulation of transitional flows over airfoils and wings, in: 19th AIAA Computational Fluid Dynamics, 2009, p. 4131. · Zbl 1242.76085
[21] L.T. Diosady, S.M. Murman, DNS of flows over periodic hills using a discontinuous Galerkin spectral-element method, in: 44th AIAA Fluid Dynamics Conference, 2014, p. 2784.
[22] Lombard, J.-E. W.; Moxey, D.; Sherwin, S. J.; Hoessler, J. F.; Dhandapani, S.; Taylor, M. J., Implicit large-eddy simulation of a wingtip vortex, AIAA J., 54, 2, 506-518 (2016)
[23] Bohm, M.; Winters, A. R.; Gassner, G. J.; Derigs, D.; Hindenlang, F.; Saur, J., An entropy stable nodal discontinuous Galerkin method for the resistive MHD equations. Part I: Theory and numerical verification, J. Comput. Phys. (2018)
[24] Hindenlang, F., Mesh Curving Techniques for High Order Parallel Simulations on Unstructured Meshes (2014), University of Stuttgart, (Ph.D. thesis)
[25] Hindenlang, F.; Bolemann, T.; Munz, C.-D., Mesh curving techniques for high order discontinuous Galerkin simulations, (IDIHOM: Industrialization of High-Order Methods-a Top-Down Approach (2015), Springer), 133-152
[26] Geuzaine, C.; Remacle, J.-F.c., Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities, Internat. J. Numer. Methods Engrg., 79, 11, 1309-1331 (2009) · Zbl 1176.74181
[27] Toulorge, T.; Geuzaine, C.; Remacle, J.-F.; Lambrechts, J., Robust untangling of curvilinear meshes, J. Comput. Phys., 254, 8-26 (2013) · Zbl 1349.65670
[28] Fortunato, M.; Persson, P.-O., High-order unstructured curved mesh generation using the Winslow equations, J. Comput. Phys., 307, 1-14 (2016) · Zbl 1352.65607
[29] Marcon, J.; Kopriva, D. A.; Sherwin, S. J.; Peiró, J., A high resolution PDE approach to quadrilateral mesh generation, J. Comput. Phys. (2019)
[30] The HDF Group, J., Hierarchical data format, version 5 (1997)
[31] Farin, G., Curves and Surfaces For CAGD: A Practical Guide (2002), Morgan Kaufmann Publishers Inc.: Morgan Kaufmann Publishers Inc. San Francisco, CA, USA
[32] Farin, G.; Hansford, D., Discrete Coons patches, Comput. Aided Geom. Design, 16, 7, 691-700 (1999) · Zbl 0997.65033
[33] de Boer, A.; van Zuijlen, A.; Bijl, H., Radial basis functions for interface interpolation and mesh deformation, (Advanced Computational Methods in Science and Engineering (2009), Springer), 143-178 · Zbl 1187.68668
[34] Zeifang, J.; Kaiser, K.; Beck, A.; Schütz, J.; Munz, C.-D., Efficient high-order discontinuous Galerkin computations of low mach number flows, Commun. Appl. Math. Comput. Sci., 13, 2, 243-270 (2018) · Zbl 1408.65091
[35] Vangelatos, S., On the Efficiency of Implicit Discontinuous Galerkin Spectral Element Methods for the Unsteady Compressible Navier-Stokes Equations (2019), University of Stuttgart, (Ph.D. thesis)
[36] Atak, M.; Larsson, J.; Munz, C.-D., The multicore challenge: Petascale DNS of a spatially-developing supersonic turbulent boundary layer up to high Reynolds numbers using DGSEM, (Resch, M. M.; Bez, W.; Focht, E.; Kobayashi, H.; Qi, J.; Roller, S., Sustained Simulation Performance 2015 (2015), Springer International Publishing: Springer International Publishing Cham), 171-183
[37] Schulz-Rinne, C. W., Classification of the Riemann problem for two-dimensional gas dynamics, SIAM J. Math. Anal., 24, 1, 76-88 (1993) · Zbl 0811.35082
[38] Gassner, G. J.; Winters, A. R.; Kopriva, D. A., Split form nodal discontinuous Galerkin schemes with summation-by-parts property for the compressible Euler equations, J. Comput. Phys., 327, 39-66 (2016) · Zbl 1422.65280
[39] Beck, A. D.; Flad, D. G.; Tonhäuser, C.; Gassner, G.; Munz, C.-D., On the influence of polynomial de-aliasing on subgrid scale models, Flow Turbul. Combust., 97, 2, 475-511 (2016)
[40] Flad, D.; Gassner, G., On the use of kinetic energy preserving DG-schemes for large eddy simulation, J. Comput. Phys., 350, 782-795 (2017) · Zbl 1380.76019
[41] Beck, A. D.; Bolemann, T.; Flad, D.; Frank, H.; Gassner, G. J.; Hindenlang, F.; Munz, C.-D., High-order discontinuous Galerkin spectral element methods for transitional and turbulent flow simulations, Internat. J. Numer. Methods Fluids, 76, 8, 522-548 (2014)
[42] Toro, E. F., Riemann Solvers and Numerical Methods for Fluid Dynamics: a Practical Introduction (2013), Springer Science & Business Media
[43] Bassi, F.; Rebay, S.; Mariotti, G.; Pedinotti, S.; Savini, M., A high-order accurate discontinuous finite element method for inviscid and viscous turbo-machinery flows, (Decuypere, R.; Dibelius, G., 2nd European Conference on Turbomachinery Fluid Dynamics and Thermodynamics (1997)), 99-108
[44] Smagorinsky, J., General circulation experiments with the primitive equations: I. The basic experiment, Mon. Weather Rev., 91, 3, 99-164 (1963)
[45] Nicoud, F.; Toda, H. B.; Cabrit, O.; Bose, S.; Lee, J., Using singular values to build a subgrid-scale model for large eddy simulations, Phys. Fluids, 23, 8, Article 085106 pp. (2011)
[46] Vreman, A., An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic theory and applications, Phys. Fluids, 16, 10, 3670-3681 (2004) · Zbl 1187.76543
[47] Flad, D.; Beck, A.; Munz, C.-D., Simulation of underresolved turbulent flows by adaptive filtering using the high order discontinuous Galerkin spectral element method, J. Comput. Phys., 313, 1-12 (2016) · Zbl 1349.76118
[48] Larsson, J.; Kawai, S.; Bodart, J.; Bermejo-Moreno, I., Large eddy simulation with modeled wall-stress: recent progress and future directions, Mech. Eng. Rev., 3, 1, 15-00418 (2016)
[49] P. Spalart, S. Allmaras, A one-equation turbulence model for aerodynamic flows, in: 30th Aerospace Sciences Meeting and Exhibit, 1992, p. 439.
[50] Collis, S., Discontinuous Galerkin methods for turbulence simulation, (Proceedings of the Summer Program 2002 (2002), Center for Turbulence Research), 155-167
[51] De Laage de Meux, B.; Audebert, B.; Manceau, R.; Perrin, R., Anisotropic linear forcing for synthetic turbulence generation in large eddy simulation and hybrid RANS/LES modeling, Phys. Fluids, 27, 3, 035115 (2015)
[52] Pruett, C.; Gatski, T.; Grosch, C. E.; Thacker, W., The temporally filtered Navier-Stokes equations: properties of the residual stress, Phys. Fluids, 15, 8, 2127-2140 (2003) · Zbl 1186.76434
[53] Ahrens, J.; Geveci, B.; Law, C., Paraview: An end-user tool for large data visualization, (The Visualization Handbook, Vol. 717 (2005), Elsevier München)
[54] Beck, A.; Krais, N., Blender pipeline (2018)
[55] Blender Online Community, A., Blender - a 3D Modelling and Rendering Package (2018), Blender Foundation, Stichting Blender Foundation: Blender Foundation, Stichting Blender Foundation Amsterdam
[56] Kopriva, D. A., Metric identities and the discontinuous spectral element method on curvilinear meshes, J. Sci. Comput., 26, 3, 301 (2006) · Zbl 1178.76269
[57] Kopriva, D. A.; Gassner, G., On the quadrature and weak form choices in collocation type discontinuous Galerkin spectral element methods, J. Sci. Comput., 44, 2, 136-155 (2010) · Zbl 1203.65199
[58] Kopriva, D. A., A conservative staggered-grid Chebyshev multidomain method for compressible flows. II. a semi-structured method, J. Comput. Phys., 128, 2, 475-488 (1996) · Zbl 0866.76064
[59] Fisher, T. C.; Carpenter, M. H., High-order entropy stable finite difference schemes for nonlinear conservation laws: Finite domains, J. Comput. Phys., 252, 518-557 (2013) · Zbl 1349.65293
[60] Tadmor, E., The numerical viscosity of entropy stable schemes for systems of conservation laws. I, Math. Comp., 49, 179, 91-103 (1987) · Zbl 0641.65068
[61] Jameson, A., Formulation of kinetic energy preserving conservative schemes for gas dynamics and direct numerical simulation of one-dimensional viscous compressible flow in a shock tube using entropy and kinetic energy preserving schemes, J. Sci. Comput., 34, 2, 188-208 (2008) · Zbl 1133.76031
[62] Blaisdell, G.; Spyropoulos, E.; Qin, J., The effect of the formulation of nonlinear terms on aliasing errors in spectral methods, Appl. Numer. Math., 21, 3, 207-219 (1996) · Zbl 0858.76060
[63] Kennedy, C. A.; Gruber, A., Reduced aliasing formulations of the convective terms within the Navier-Stokes equations for a compressible fluid, J. Comput. Phys., 227, 3, 1676-1700 (2008) · Zbl 1290.76135
[64] von Neumann, J.; Richtmyer, R. D., A method for the numerical calculation of hydrodynamic shocks, J. Appl. Phys., 21, 3, 232-237 (1950) · Zbl 0037.12002
[65] P.-O. Persson, J. Peraire, Sub-cell shock capturing for discontinuous Galerkin methods, in: 44th AIAA Aerospace Sciences Meeting and Exhibit, 2006, p. 112.
[66] Qiu, J.; Shu, C.-W., Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method: one-dimensional case, J. Comput. Phys., 193, 1, 115-135 (2004) · Zbl 1039.65068
[67] Huerta, A.; Casoni, E.; Peraire, J., A simple shock-capturing technique for high-order discontinuous Galerkin methods, Internat. J. Numer. Methods Fluids, 69, 10, 1614-1632 (2012) · Zbl 1253.76058
[68] Sonntag, M.; Munz, C.-D., Efficient parallelization of a shock capturing for discontinuous Galerkin methods using finite volume sub-cells, J. Sci. Comput., 70, 3, 1262-1289 (2017) · Zbl 1366.65089
[69] Sonntag, M.; Munz, C.-D., Shock capturing for discontinuous Galerkin methods using finite volume subcells, (Finite Volumes for Complex Applications VII-Elliptic. Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems (2014), Springer), 945-953 · Zbl 1426.76429
[70] Harten, A., High resolution schemes for hyperbolic conservation laws, J. Comput. Phys., 49, 3, 357-393 (1983) · Zbl 0565.65050
[71] Van Leer, B., Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method, J. Comput. Phys., 32, 1, 101-136 (1979) · Zbl 1364.65223
[72] Sonntag, M., Shape Derivatives and Shock Capturing for the Navier-Stokes Equations in Discontinuous Galerkin Methods (2017), University of Stuttgart, (Ph.D. thesis)
[73] Dumbser, M.; Zanotti, O.; Loubère, R.; Diot, S., A posteriori subcell limiting of the discontinuous Galerkin finite element method for hyperbolic conservation laws, J. Comput. Phys., 278, 47-75 (2014) · Zbl 1349.65448
[74] A. Jameson, W. Schmidt, E. Turkel, Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes, in: 14th Fluid and Plasma Dynamics Conference, 1981, p. 1259.
[75] Ducros, F.; Ferrand, V.; Nicoud, F.; Weber, C.; Darracq, D.; Gacherieu, C.; Poinsot, T., Large-eddy simulation of the shock/turbulence interaction, J. Comput. Phys., 152, 2, 517-549 (1999) · Zbl 0955.76045
[76] Williamson, J., Low-storage Runge-Kutta schemes, J. Comput. Phys., 35, 1, 48-56 (1980) · Zbl 0425.65038
[77] Courant, R.; Friedrichs, K.; Lewy, H., Über die partiellen Differenzengleichungen der mathematischen Physik, Math. Ann., 100, 1, 32-74 (1928) · JFM 54.0486.01
[78] Cockburn, B.; Shu, C.-W., Runge-Kutta discontinuous Galerkin methods for convection-dominated problems, J. Sci. Comput., 16, 3, 173-261 (2001) · Zbl 1065.76135
[79] Warburton, T.; Hagstrom, T., Taming the CFL number for discontinuous Galerkin methods on structured meshes, SIAM J. Numer. Anal., 46, 6, 3151-3180 (2008) · Zbl 1181.35010
[80] C. Rumsey, B. Wedan, T. Hauser, M. Poinot, Recent updates to the CFD general notation system (CGNS), in: 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2012, p. 1264.
[81] Fehn, N.; Wall, W. A.; Kronbichler, M., A matrix-free high-order discontinuous Galerkin compressible Navier-Stokes solver: A performance comparison of compressible and incompressible formulations for turbulent incompressible flows, Internat. J. Numer. Methods Fluids, 89, 3, 71-102 (2019)
[82] Bolemann, T., Towards Industrialization of High-Order Discontinuous Galerkin Methods for Turbulent Flows (2018), University of Stuttgart, (Ph.D. thesis)
[83] Resch, M.; Kaminski, A., The epistemic importance of technology in computer simulation and machine learning, Minds Mach., 29, 1, 9-17 (2019)
[84] Peng, R. D., Reproducible research in computational science, Science, 334, 6060, 1226-1227 (2011)
[85] Chacon, S.; Straub, B., Pro Git (2014), Apress
[86] Gassner, G. J.; Beck, A. D., On the accuracy of high-order discretizations for underresolved turbulence simulations, Theor. Comput. Fluid Dyn., 27, 3-4, 221-237 (2013)
[87] Hindenlang, F.; Gassner, G. J.; Altmann, C.; Beck, A.; Staudenmaier, M.; Munz, C.-D., Explicit discontinuous Galerkin methods for unsteady problems, Comput. & Fluids, 61, 86-93 (2012) · Zbl 1365.76117
[88] D. Flad, A.D. Beck, G. Gassner, C.-D. Munz, A discontinuous Galerkin spectral element method for the direct numerical simulation of aeroacoustics, in: 20th AIAA/CEAS Aeroacoustics Conference, 2014, p. 2740.
[89] Atak, M.; Beck, A.; Bolemann, T.; Flad, D.; Frank, H.; Munz, C.-D., High fidelity scale-resolving computational fluid dynamics using the high order discontinuous Galerkin spectral element method, (High Performance Computing in Science and Engineerinǵ 15 (2016), Springer), 511-530
[90] Frank, H. M.; Munz, C.-D., Direct aeroacoustic simulation of acoustic feedback phenomena on a side-view mirror, J. Sound Vib., 371, 132-149 (2016)
[91] Pirozzoli, S., Numerical methods for high-speed flows, Annu. Rev. Fluid Mech., 43, 163-194 (2011) · Zbl 1299.76103
[92] Drela, M., XFOIL: An analysis and design system for low Reynolds number airfoils, (Mueller, T. J., Low Reynolds Number Aerodynamics (1989), Springer Berlin Heidelberg: Springer Berlin Heidelberg Berlin, Heidelberg), 1-12
[93] Shu, C.-W., Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, (Advanced Numerical Approximation of Nonlinear Hyperbolic Equations (1998), Springer), 325-432 · Zbl 0927.65111
[94] Chandrashekar, P., Kinetic energy preserving and entropy stable finite volume schemes for compressible Euler and Navier-Stokes equations, Commun. Comput. Phys., 14, 5, 1252-1286 (2013) · Zbl 1373.76121
[95] Lund, T. S.; Wu, X.; Squires, K. D., Generation of turbulent inflow data for spatially-developing boundary layer simulations, J. Comput. Phys., 140, 2, 233-258 (1998) · Zbl 0936.76026
[96] Kawai, S.; Larsson, J., Wall-modeling in large eddy simulation: Length scales, grid resolution, and accuracy, Phys. Fluids, 24, 1, Article 015105 pp. (2012)
[97] L. Erbig, N. Hu, S. Lardeau, Experimental and numerical study of passive gap noise, in: 2018 AIAA/CEAS Aeroacoustics Conference, 2018, p. 3595.
[98] T. Kuhn, Zonal large eddy simulation of active open cavity noise using a high order discontinuous Galerkin method, in: 25th AIAA/CEAS Aeroacoustics Conference, 2019, p. 2465.
[99] Fechter, S.; Munz, C.-D.; Rohde, C.; Zeiler, C., A sharp interface method for compressible liquid-vapor flow with phase transition and surface tension, J. Comput. Phys., 336, 347-374 (2017) · Zbl 1375.76194
[100] Hempert, F.; Boblest, S.; Ertl, T.; Sadlo, F.; Offenhäuser, P.; Glass, C.; Hoffmann, M.; Beck, A.; Munz, C.-D.; Iben, U., Simulation of real gas effects in supersonic methane jets using a tabulated equation of state with a discontinuous Galerkin spectral element method, Comput. & Fluids, 145, 167-179 (2017) · Zbl 1390.76273
[101] Beck, A.; Ortwein, P.; Kopper, P.; Krais, N.; Kempf, D.; Koch, C., Towards high-fidelity erosion prediction: On time-accurate particle tracking in turbomachinery, Int. J. Heat Fluid Flow, 79, 108457 (2019)
[102] Schnücke, G.; Krais, N.; Bolemann, T.; Gassner, G. J., Entropy stable discontinuous Galerkin schemes on moving meshes for hyperbolic conservation laws, J. Sci. Comput. (2020) · Zbl 1437.65142
[103] Copplestone, S. M.; Pfeiffer, M.; Fasoulas, S.; Munz, C.-D., High-order Particle-In-Cell simulations of laser-plasma interaction, Eur. Phys. J. Spec. Top., 227, 14, 1603-1614 (2019)
[104] Ortwein, P.; Copplestone, S.; Munz, C.-D.; Binder, T.; Mirza, A.; Nizenkov, P.; Pfeiffer, M.; Reschke, W.; Fasoulas, S., Piclas: A highly flexible particle code for the simulation of reactive plasma flows, (2017 IEEE International Conference on Plasma Science. 2017 IEEE International Conference on Plasma Science, ICOPS (2017), IEEE), 1
[105] Kuhn, T.; Dürrwächter, J.; Meyer, F.; Beck, A.; Rohde, C.; Munz, C.-D., Uncertainty quantification for direct aeroacoustic simulations of cavity flows, J. Comput. Acoust. (2018)
[106] Bungartz, H.-J.; Lindner, F.; Gatzhammer, B.; Mehl, M.; Scheufele, K.; Shukaev, A.; Uekermann, B., PreCICE - A fully parallel library for multi-physics surface coupling, Advances in Fluid-Structure Interaction. Advances in Fluid-Structure Interaction, Comput. & Fluids, 141, 250-258 (2016) · Zbl 1390.76004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.