×

zbMATH — the first resource for mathematics

DuMu\(^{\text x} 3\) – an open-source simulator for solving flow and transport problems in porous media with a focus on model coupling. (English) Zbl 1456.76079
Summary: We present version 3 of the open-source simulator for flow and transport processes in porous media DuMu\(^{\text x}\). DuMu\(^{\text x}\) is based on the modular C++ framework Dune (Distributed and Unified Numerics Environment) and is developed as a research code with a focus on modularity and reusability. We describe recent efforts in improving the transparency and efficiency of the development process and community-building, as well as efforts towards quality assurance and reproducible research. In addition to a major redesign of many simulation components in order to facilitate setting up complex simulations in DuMu\(^{\text x}\), version 3 introduces a more consistent abstraction of finite volume schemes. Finally, the new framework for multi-domain simulations is described, and three numerical examples demonstrate its flexibility.
MSC:
76M12 Finite volume methods applied to problems in fluid mechanics
76S05 Flows in porous media; filtration; seepage
76T30 Three or more component flows
76-04 Software, source code, etc. for problems pertaining to fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Flemisch, B.; Darcis, M.; Erbertseder, K.; Faigle, B.; Lauser, A.; Mosthaf, K.; Müthing, S.; Nuske, P.; Tatomir, A.; Wolff, M.; Helmig, R., DuMu^x: DUNE for multi-phase, component, scale, physics, … flow and transport in porous media, Adv. Water Resour., 34, 9, 1102-1112 (2011)
[2] Nordbotten, J. M.; Flemisch, B.; Gasda, S. E.; Nilsen, H. M.; Fan, Y.; Pickup, G. E.; Wiese, B.; Celia, M. A.; Dahle, H. K.; Eigestad, G. T.; Pruess, K., Uncertainties in practical simulation of CO_2 storage, Int. J. Greenh. Gas Control, 9, 234-242 (2012)
[3] Ahusborde, E.; Kern, M.; Vostrikov, V., Numerical simulation of two-phase multicomponent flow with reactive transport in porous media: application to geological sequestration of CO_2, ESAIM Proc. Surv., 50, 21-39 (2015) · Zbl 1382.76179
[4] Hagemann, B.; Rasoulzadeh, M.; Panfilov, M.; Ganzer, L.; Reitenbach, V., Hydrogenization of underground storage of natural gas, Comput. Geosci., 20, 3, 595-606 (2016) · Zbl 1392.76083
[5] Walter, L.; Binning, P. J.; Oladyshkin, S.; Flemisch, B.; Class, H., Brine migration resulting from CO_2 injection into saline aquifers - An approach to risk estimation including various levels of uncertainty, Int. J. Greenh. Gas Control, 9, 495-506 (2012)
[6] Ahusborde, E.; Amaziane, B.; Jurak, M., Three-dimensional numerical simulation by upscaling of gas migration through engineered and geological barriers for a deep repository for radioactive waste, Geol. Soc. Lond. Spec. Publ., 415, 1, 123-141 (2015)
[7] Roy, N.; Molson, J.; Lemieux, J.-M.; Van Stempvoort, D.; Nowamooz, A., Three-dimensional numerical simulations of methane gas migration from decommissioned hydrocarbon production wells into shallow aquifers, Water Resour. Res., 52, 7, 5598-5618 (2016)
[8] Weishaupt, K.; Bordenave, A.; Atteia, O.; Class, H., Numerical investigation on the benefits of preheating for an increased thermal radius of influence during steam injection in saturated soil, Transp. Porous Media, 114, 2, 601-621 (2016)
[9] Schwenck, N.; Flemisch, B.; Helmig, R.; Wohlmuth, B. I., Dimensionally reduced flow models in fractured porous media: crossings and boundaries, Comput. Geosci., 19, 6, 1219-1230 (2015) · Zbl 1391.76747
[10] Stadler, L.; Hinkelmann, R.; Helmig, R., Modeling macroporous soils with a two-phase dual-permeability model, Transp. Porous Media, 95, 3, 585-601 (2012)
[11] Tecklenburg, J.; Neuweiler, I.; Carrera, J.; Dentz, M., Multi-rate mass transfer modeling of two-phase flow in highly heterogeneous fractured and porous media, Adv. Water Resour., 91, 63-77 (2016)
[12] Gläser, D.; Helmig, R.; Flemisch, B.; Class, H., A discrete fracture model for two-phase flow in fractured porous media, Adv. Water Resour., 110, 335-348 (2017)
[13] Andrianov, N.; Nick, H. M., Modeling of waterflood efficiency using outcrop-based fractured models, J. Pet. Sci. Eng., 183, Article 106350 pp. (2019)
[14] Fourno, A.; Ngo, T.-D.; Noetinger, B.; Borderie, C. L., FraC: A new conforming mesh method for discrete fracture networks, J. Comput. Phys., 376, 713-732 (2019) · Zbl 1416.65494
[15] Ahusborde, E.; Ossmani, M. E.; Moulay, M. I., A fully implicit finite volume scheme for single phase flow with reactive transport in porous media, Math. Comput. Simulation, 164, 3-23 (2019)
[16] Hommel, J.; Lauchnor, E.; Phillips, A.; Gerlach, R.; Cunningham, A. B.; Helmig, R.; Ebigbo, A.; Class, H., A revised model for microbially induced calcite precipitation: Improvements and new insights based on recent experiments, Water Resour. Res., 51, 5, 3695-3715 (2015)
[17] Cunningham, A. B.; Class, H.; Ebigbo, A.; Gerlach, R.; Phillips, A. J.; Hommel, J., Field-scale modeling of microbially induced calcite precipitation, Comput. Geosci., 23, 2, 399-414 (2019)
[18] Koch, T.; Heck, K.; Schröder, N.; Class, H.; Helmig, R., A new simulation framework for soil-root interaction, evaporation, root growth, and solute transport, Vadose Zone J., 17, 1 (2018)
[19] Mai, T. H.; Schnepf, A.; Vereecken, H.; Vanderborght, J., Continuum multiscale model of root water and nutrient uptake from soil with explicit consideration of the 3D root architecture and the rhizosphere gradients, Plant Soil, 439, 1, 273-292 (2019)
[20] Futter, G. A.; Gazdzicki, P.; Friedrich, K. A.; Latz, A.; Jahnke, T., Physical modeling of polymer-electrolyte membrane fuel cells: Understanding water management and impedance spectra, J. Power Sources, 391, 148-161 (2018)
[21] Weishaupt, K.; Joekar-Niasar, V.; Helmig, R., An efficient coupling of free flow and porous media flow using the pore-network modeling approach, J. Comput. Phys. X, 1, Article 100011 pp. (2019)
[22] Erbertseder, K.; Reichold, J.; Flemisch, B.; Jenny, P.; Helmig, R., A coupled discrete/continuum model for describing cancer-therapeutic transport in the lung, PLoS One, 7, 3, 1-17 (2012)
[23] Vidotto, E.; Koch, T.; Köppl, T.; Helmig, R.; Wohlmuth, B., Hybrid models for simulating blood flow in microvascular networks, Multiscale Model. Simul., 17, 3, 1076-1102 (2019) · Zbl 1433.76200
[24] Støverud, K. H.; Darcis, M.; Helmig, R.; Hassanizadeh, S. M., Modeling concentration distribution and deformation during convection-enhanced drug delivery into brain tissue, Transp. Porous Media, 92, 1, 119-143 (2012)
[25] Mosthaf, K.; Baber, K.; Flemisch, B.; Helmig, R.; Leijnse, A.; Rybak, I.; Wohlmuth, B., A coupling concept for two-phase compositional porous-medium and single-phase compositional free flow, Water Resour. Res., 47, 10 (2011)
[26] Fetzer, T.; Smits, K. M.; Helmig, R., Effect of turbulence and roughness on coupled porous-medium/free-flow exchange processes, Transp. Porous Media, 114, 2, 395-424 (2016)
[27] Bastian, P.; Blatt, M.; Dedner, A.; Engwer, C.; Klöfkorn, R.; Kornhuber, R.; Ohlberger, M.; Sander, O., A generic grid interface for parallel and adaptive scientific computing. Part II: Implementation and tests in DUNE, Computing, 82, 2, 121-138 (2008) · Zbl 1151.65088
[28] Bastian, P.; Blatt, M.; Dedner, A.; Engwer, C.; Klöfkorn, R.; Ohlberger, M.; Sander, O., A generic grid interface for parallel and adaptive scientific computing. Part I: Abstract framework, Computing, 82, 2-3, 103-119 (2008) · Zbl 1151.65089
[29] P. Bastian, M. Blatt, A. Dedner, C. Engwer, J. Fahlke, C. Gersbacher, C. Gräser, C. Grüninger, D. Kempf, R. Klöfkorn, S. Müthing, M. Nolte, M. Ohlberger, O. Sander, Dune webpage, http://www.dune-project.org.
[30] Bastian, P.; Blatt, M.; Dedner, A.; Dreier, N.-A.; Engwer, C.; Fritze, R.; Gräser, C.; Kempf, D.; Klöfkorn, R.; Ohlberger, M.; Sander, O., The DUNE Framework: Basic Concepts and Recent Developments, Comput. Math. Appl., 81, 75-112 (2020)
[31] Blatt, M.; Bastian, P., The iterative solver template library, (Kågström, B.; Elmroth, E.; Dongarra, J.; Waśniewski, J., Applied Parallel Computing. State of the Art in Scientific Computing: 8th International Workshop. Applied Parallel Computing. State of the Art in Scientific Computing: 8th International Workshop, PARA 2006, Umeå, Sweden, June 18-21, 2006, Revised Selected Papers (2007), Springer Berlin Heidelberg: Springer Berlin Heidelberg Berlin, Heidelberg), 666-675
[32] Bilke, L.; Flemisch, B.; Kalbacher, T.; Kolditz, O.; Helmig, R.; Nagel, T., Development of open-source porous media simulators: Principles and experiences, Transp. Porous Media (2019)
[33] McDonald, M. G.; Harbaugh, A. W., the original authors of MODFLOW, The history of MODFLOW, Groundwater, 41, 2, 280-283 (2003)
[34] Lie, K.-A., (An Introduction to Reservoir Simulation Using MATLAB/GNU Octave: User Guide for the MATLAB Reservoir Simulation Toolbox. An Introduction to Reservoir Simulation Using MATLAB/GNU Octave: User Guide for the MATLAB Reservoir Simulation Toolbox, MRST (2019), Cambridge University Press) · Zbl 1425.76001
[35] Kolditz, O.; Bauer, S.; Bilke, L.; Böttcher, N.; Delfs, J. O.; Fischer, T.; Görke, U. J.; Kalbacher, T.; Kosakowski, G.; McDermott, C. I.; Park, C. H.; Radu, F.; Rink, K.; Shao, H.; Shao, H. B.; Sun, F.; Sun, Y. Y.; Singh, A. K.; Taron, J.; Walther, M.; Wang, W.; Watanabe, N.; Wu, Y.; Xie, M.; Xu, W.; Zehner, B., OpenGeoSys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media, Environ. Earth Sci., 67, 2, 589-599 (2012)
[36] Baxendale, D.; Rasmussen, A.; Rustad, A. B.; Skille, T.; Sandve, T. H., Open porous media flow documentation manual (2018), URL https://opm-project.org/wp-content/uploads/2018/11/OPM-Flow-Documentation-2018-10-Rev-1.pdf
[37] Flø Rasmussen, A.; Harald Sandve, T.; Bao, K.; Lauser, A.; Hove, J.; Skaflestad, B.; Klöfkorn, R.; Blatt, M.; Birger Rustad, A.; Sævareid, O.; Lie, K.-A.; Thune, A., The open porous media flow reservoir simulator, Comput. Math. Appl., 81, 159-185 (2020)
[38] Maxwell, R. M.; Condon, L. E.; Kollet, S. J., A high-resolution simulation of groundwater and surface water over most of the continental US with the integrated hydrologic model ParFlow v3, Geosci. Model Dev., 8, 3, 923-937 (2015)
[39] Lichtner, P. C.; Hammond, G. E.; Lu, C.; Karra, S.; Bisht, G.; Andre, B.; Mills, R.; Kumar, J., PFLOTRAN user manual: A massively parallel reactive flow and transport model for describing surface and subsurface processes (2015)
[40] Keilegavlen, E.; Fumagalli, A.; Berge, R.; Stefansson, I.; Berre, I., PorePy: An open-source simulation tool for flow and transport in deformable fractured rocks (2017), CoRR abs/1712.00460 arXiv:1712.00460
[41] Bangerth, W.; Hartmann, R.; Kanschat, G., Deal.II - A general-purpose object-oriented finite element library, ACM Trans. Math. Software, 33, 4 (2007) · Zbl 1365.65248
[42] Prud’Homme, C.; Chabannes, V.; Doyeux, V.; Ismail, M.; Samake, A.; Pena, G., Feel++: A computational framework for galerkin methods and advanced numerical methods, (ESAIM: Proceedings, Vol. 38 (2012), EDP Sciences), 429-455 · Zbl 1329.65277
[43] Logg, A.; Mardal, K.-A.; Wells, G., Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book, Vol. 84 (2012), Springer Science & Business Media
[44] Gaston, D.; Newman, C.; Hansen, G.; Lebrun-Grandié, D., MOOSE: A parallel computational framework for coupled systems of nonlinear equations, Nucl. Eng. Des., 239, 10, 1768-1778 (2009)
[45] Bradley, C.; Bowery, A.; Britten, R.; Budelmann, V.; Camara, O.; Christie, R.; Cookson, A.; Frangi, A. F.; Gamage, T. B.; Heidlauf, T.; Krittian, S.; Ladd, D.; Little, C.; Mithraratne, K.; Nash, M.; Nickerson, D.; Nielsen, P.; Nordbø, O.; Omholt, S.; Pashaei, A.; Paterson, D.; Rajagopal, V.; Reeve, A.; Röhrle, O.; Safaei, S.; Sebastián, R.; Steghöfer, M.; Wu, T.; Yu, T.; Zhang, H.; Hunter, P., OpenCMISS: a multi-physics & multi-scale computational infrastructure for the VPH/Physiome project, Prog. Biophys. Mol. Biol., 107, 1, 32-47 (2011)
[46] GNU General public license, version 2, URL https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html.
[47] K. Heck, S. Ackermann, B. Becker, E. Coltman, S. Emmert, B. Flemisch, D. Gläser, C. Grüninger, T. Koch, T. Kurz, M. Lipp, F. Mohammadi, S. Scherrer, M. Schneider, G. Seitz, L. Stadler, M. Utz, A. Vescovini, F. Weinhardt, K. Weishaupt, DuMuX 3.1.0, http://dx.doi.org/10.5281/zenodo.3482428.
[48] K.-A. Lie, P. Bastian, H.K. Dahle, B. Flemisch, K. Flornes, A. Rasmussen, A.B. Rustad, OPM—Open porous media, 2009, unpublished.
[49] Kempf, D.; Koch, T., System testing in scientific numerical software frameworks using the example of DUNE, Arch. Numer. Softw., 5, 1, 151-168 (2017)
[50] Lauser, A., The DuMu^x material law framework, (Dedner, A.; Flemisch, B.; Klöfkorn, R., Advances in DUNE (2012), Springer Berlin Heidelberg: Springer Berlin Heidelberg Berlin, Heidelberg), 113-128
[51] The DuMu^x developers, DuMu^x handbook 3.0, https://dumux.org/handbook.
[52] Huber, R.; Helmig, R., Multiphase flow in heterogeneous porous media: A classical finite element method versus an implicit pressure-explicit saturation-based mixed finite element-finite volume approach, Internat. J. Numer. Methods Fluids, 29, 8, 899-920 (1999) · Zbl 0938.76053
[53] Helmig, R., Multiphase Flow and Transport Processes in the Subsurface: a Contribution to the Modeling of Hydrosystems (1997), Springer-Verlag
[54] Droniou, J., Finite volume schemes for diffusion equations: Introduction to and review of modern methods, Math. Models Methods Appl. Sci., 24, 08, 1575-1619 (2014) · Zbl 1291.65319
[55] Schneider, M.; Weishaupt, K.; Gläser, D.; Boon, W. M.; Helmig, R., Coupling staggered-grid and mpfa finite volume methods for free flow/porous-medium flow problems, J. Comput. Phys., 401, 109012 (2020)
[56] Aavatsmark, I., An introduction to multipoint flux approximations for quadrilateral grids, Comput. Geosci., 6, 3, 405-432 (2002) · Zbl 1094.76550
[57] Schneider, M.; Gläser, D.; Flemisch, B.; Helmig, R., Comparison of finite-volume schemes for diffusion problems, Oil Gas Sci. Technol. Rev. IFP Energ. Nouvelles, 73, 82 (2018)
[58] M. Schneider, Nonlinear Finite Volume Schemes for Complex Flow Processes and Challenging Grids (Ph.D. thesis), University of Stuttgart http://dx.doi.org/10.18419/opus-10416.
[59] Helmig, R.; Flemisch, B.; Wolff, M.; Ebigbo, A.; Class, H., Model coupling for multiphase flow in porous media, Adv. Water Resour., 51, 52-66 (2013), 35th Year Anniversary Issue
[60] Ericson, C., Real-Time Collision Detection (2004), CRC Press
[61] Massing, A.; Larson, M.; Logg, A., Efficient implementation of finite element methods on nonmatching and overlapping meshes in three dimensions, SIAM J. Sci. Comput., 35, 1, C23-C47 (2013) · Zbl 1264.65194
[62] Koch, T.; Flemisch, B.; Helmig, R.; Wiest, R.; Obrist, D., A multiscale subvoxel perfusion model to estimate diffusive capillary wall conductivity in multiple sclerosis lesions from perfusion MRI data, Int. J. Numer. Methods Biomed. Eng., 36, 2, e3298 (2020)
[63] Gläser, D.; Flemisch, B.; Helmig, R.; Class, H., A hybrid-dimensional discrete fracture model for non-isothermal two-phase flow in fractured porous media, GEM Int. J. Geomath., 10, 1, 5 (2019) · Zbl 1419.76608
[64] Hommel, J.; Coltman, E.; Class, H., Porosity-permeability relations for evolving pore space: A review with a focus on (bio-)geochemically altered porous media, Transp. Porous Media, 124, 2, 589-629 (2018)
[65] Fetzer, T.; Grüninger, C.; Flemisch, B.; Helmig, R., On the conditions for coupling free flow and porous-medium flow in a finite volume framework, (Cancès, C.; Omnes, P., Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems (2017), Springer International Publishing: Springer International Publishing Cham), 347-356 · Zbl 1365.76306
[66] Yang, G.; Coltman, E.; Weishaupt, K.; Terzis, A.; Helmig, R.; Weigand, B., On the Beavers-Joseph interface condition for non-parallel coupled channel flow over a porous structure at high Reynolds numbers, Transp. Porous Media, 128, 2, 431-457 (2019)
[67] Fetzer, T.; Smits, K. M.; Helmig, R., Effect of turbulence and roughness on coupled porous-medium/free-flow exchange processes, Transp. Porous Media, 114, 2, 395-424 (2016)
[68] Aarnes, J. E.; Krogstad, S.; Lie, K.-A., Multiscale mixed/mimetic methods on corner-point grids, Comput. Geosci., 12, 3, 297-315 (2008) · Zbl 1259.76065
[69] Schneider, M.; Flemisch, B.; Helmig, R.; Terekhov, K.; Tchelepi, H., Monotone nonlinear finite-volume method for challenging grids, Comput. Geosci., 22, 2, 565-586 (2018) · Zbl 1405.65145
[70] Peaceman, D. W., Interpretation of well-block pressures in numerical reservoir simulation, Soc. Pet. Eng. J., 18, 03, 183-194 (1978)
[71] Geuzaine, C.; Remacle, J.-F., Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities, Internat. J. Numer. Methods Engrg., 79, 11, 1309-1331 (2009) · Zbl 1176.74181
[72] Gnuplot, URL http://www.gnuplot.info.
[73] Hunter, J. D., Matplotlib: A 2D graphics environment, Comput. Sci. Eng., 9, 3, 90-95 (2007)
[74] Ahrens, J.; Geveci, B.; Law, C., Paraview: An end-user tool for large-data visualization, (Hansen, C. D.; Johnson, C. R., Visualization Handbook (2005), Butterworth-Heinemann: Butterworth-Heinemann Burlington), 717-731
[75] Truckenbrodt, E. A., Fluidmechanik (1996), Springer
[76] Fatt, I., The Network Model of Porous Media (1956), Society of Petroleum Engineers
[77] Blunt, M. J., Multiphase Flow in Permeable Media: A Pore-Scale Perspective (2017), Cambridge University Press
[78] Layton, W. J.; Schieweck, F.; Yotov, I., Coupling fluid flow with porous media flow, SIAM J. Numer. Anal., 40, 6, 2195-2218 (2002) · Zbl 1037.76014
[79] Sander, O.; Koch, T.; Schröder, N.; Flemisch, B., The Dune FoamGrid implementation for surface and network grids, Arch. Numer. Softw., 5, 1, 217-244 (2017)
[80] Davis, T. A., Algorithm 832: UMFPACK V4.3—an unsymmetric-pattern multifrontal method, ACM Trans. Math. Software, 30, 2, 196-199 (2004) · Zbl 1072.65037
[81] Martin, V.; Jaffré, J.; Roberts, J. E., Modeling fractures and barriers as interfaces for flow in porous media, SIAM J. Sci. Comput., 26, 5, 1667-1691 (2005) · Zbl 1083.76058
[82] Ahmed, R.; Edwards, M.; Lamine, S.; Huisman, B.; Pal, M., Control-volume distributed multi-point flux approximation coupled with a lower-dimensional fracture model, J. Comput. Phys., 284, 462-489 (2015) · Zbl 1351.74073
[83] Flemisch, B.; Berre, I.; Boon, W.; Fumagalli, A.; Schwenck, N.; Scotti, A.; Stefansson, I.; Tatomir, A., Benchmarks for single-phase flow in fractured porous media, Adv. Water Resour., 111, 239-258 (2018)
[84] Reichenberger, V.; Jakobs, H.; Bastian, P.; Helmig, R., A mixed-dimensional finite volume method for two-phase flow in fractured porous media, Adv. Water Resour., 29, 7, 1020-1036 (2006)
[85] Fumagalli, A.; Scotti, A., A numerical method for two-phase flow in fractured porous media with non-matching grids, Adv. Water Resour., 62, 454-464 (2013) · Zbl 1273.76398
[86] Tene, M.; Bosma, S. B.; Kobaisi, M. S.A.; Hajibeygi, H., Projection-based embedded discrete fracture model (pEDFM), Adv. Water Resour., 105, 205-216 (2017)
[87] Van Genuchten, M., A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Am. J., 44 (1980)
[88] Mualem, Y., A new model for predicting the hydraulic conductivity of unsaturated porous media, Water Resour. Res., 12, 3, 513-522 (1976)
[89] Luckner, L.; Van Genuchten, M.; Nielsen, D., A consistent set of parametric models for the two-phase flow of immiscible fluids in the subsurface, Water Resour. Res., 25, 10, 2187-2193 (1989)
[90] Wagner, W.; Kretzschmar, H.-J., IAPWS industrial formulation 1997 for the thermodynamic properties of water and steam, (International Steam Tables (2008), Springer Berlin Heidelberg: Springer Berlin Heidelberg Berlin, Heidelberg), 7-150
[91] Reid, R.; Prausnitz, J.; Poling, B., The Properties of Gases and Liquids (1987), McGraw-Hill Inc.
[92] Schröder, N., Three-Dimensional Solute Transport Modeling in Coupled Soil and Plant Root Systems, Vol. 22 (2014), Université catholique de Louvain (UCL): Université catholique de Louvain (UCL) Louvain-La-Neuve, Jülich, (Ph.D. thesis)
[93] D’Angelo, C.; Quarteroni, A., On the coupling of 1D and 3D diffusion-reaction equations: Application to tissue perfusion problems, Math. Models Methods Appl. Sci., 18, 08, 1481-1504 (2008) · Zbl 1359.35200
[94] Bastian, P.; Buse, G.; Sander, O., Infrastructure for the coupling of dune grids, (Kreiss, G.; Lötstedt, P.; Målqvist, A.; Neytcheva, M., Numerical Mathematics and Advanced Applications 2009 (2010), Springer Berlin Heidelberg: Springer Berlin Heidelberg Berlin, Heidelberg), 107-114 · Zbl 1311.76100
[95] Bungartz, H.-J.; Lindner, F.; Gatzhammer, B.; Mehl, M.; Scheufele, K.; Shukaev, A.; Uekermann, B., PreCICE - A fully parallel library for multi-physics surface coupling, Advances in Fluid-Structure Interaction. Advances in Fluid-Structure Interaction, Comput. & Fluids, 141, 250-258 (2016) · Zbl 1390.76004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.