×

Kaskade 7 – a flexible finite element toolbox. (English) Zbl 07288723

Summary: Kaskade 7 is a finite element toolbox for the solution of stationary or transient systems of partial differential equations, aimed at supporting application-oriented research in numerical analysis and scientific computing. The library is written in C++ and is based on the Dune interface. The code is independent of spatial dimension and works with different grid managers. An important feature is the mix-and-match approach to discretizing systems of PDEs with different ansatz and test spaces for all variables. We describe the mathematical concepts behind the library as well as its structure, illustrating its use at several examples on the way.

MSC:

65-XX Numerical analysis
00-XX General and overarching topics; collections
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Deuflhard, P.; Leinen, P.; Yserentant, H., Concepts of an adaptive hierarchical finite element code, IMPACT Comput. Sci. Eng., 1, 3-35 (1989) · Zbl 0706.65111
[2] Götschel, S.; Weiser, M.; Schiela, A., Solving optimal control problems with the Kaskade 7 finite element toolbox, (Dedner, A.; Flemisch, B.; Klöfkorn, R., Advances in DUNE (2012), Springer), 101-112
[3] Deuflhard, P.; Weiser, M., Adaptive Numerical Solution of PDEs (2012), de Gruyter · Zbl 1268.65146
[4] Blatt, M.; Bastian, P., The iterative solver template library, (Kagström, B.; Elmroth, E.; Dongarra, J.; Wasniewski, J., Applied Parallel Computing - State of the Art in Scientific Computing (2007), Springer: Springer Berlin/Heidelberg), 666-675
[5] Bastian, P.; Blatt, M.; Dedner, A.; Engwer, C.; Klöfkorn, R.; Ohlberger, M.; Sander, O., A generic grid interface for parallel and adaptive scientific computing. Part I: Abstract framework, Computing, 82, 2-3, 103-119 (2008) · Zbl 1151.65089
[6] Bastian, P.; Blatt, M.; Dedner, A.; Engwer, C.; Klöfkorn, R.; Kornhuber, R.; Ohlberger, M.; Sander, O., A generic grid interface for parallel and adaptive scientific computing. Part II: Implementation and tests in DUNE, Computing, 82, 2-3, 121-138 (2008) · Zbl 1151.65088
[7] Blatt, M.; Burchardt, A.; Dedner, A.; Engwer, C.; Fahlke, J.; Flemisch, B.; Gersbacher, C.; Gräser, C.; Gruber, F.; Grüninger, C.; Kempf, D.; Klöfkorn, R.; Malkmus, T.; Müthing, S.; Nolte, M.; Piatkowski, M.; Sander, O., The distributed and unified numerics environment, version 2.4, Arch. Numer. Softw., 4, 100, 13-29 (2016)
[8] Bastian, P.; Blatt, M.; Dedner, A.; Dreier, N.-A.; Engwer, C.; Fritze, R.; Gräser, C.; Kempf, D.; Klöfkorn, R.; Ohlberger, M.; Sander, O., The DUNE framework: Basic concepts and recent developments (2019), arXiv:1909.13672
[9] Deuflhard, P.; Schiela, A.; Weiser, M., Mathematical cancer therapy planning in deep regional hyperthermia, Acta Numer., 2, 307-378 (2012) · Zbl 1401.92103
[10] Fischer, L.; Götschel, S.; Weiser, M., Lossy data compression reduces communication time in hybrid time-parallel integrators, Comput. Vis. Sci., 19, 1, 19-30 (2018) · Zbl 1398.65372
[11] Götschel, S.; Chamakuri, N.; Kunisch, K.; Weiser, M., Lossy compression in optimal control of cardiac defibrillation, J. Sci. Comput., 60, 1, 35-59 (2014) · Zbl 1304.92069
[12] Götschel, S.; von Tycowicz, C.; Polthier, K.; Weiser, M., Reducing memory requirements in scientific computing and optimal control, (Multiple Shooting and Time Domain Decomposition Methods (2015), Springer), 263-287 · Zbl 1337.65052
[13] Götschel, S.; Weiser, M., Lossy compression for PDE-constrained optimization: Adaptive error control, Comput. Optim. Appl., 62, 131-155 (2015) · Zbl 1333.49043
[14] Götschel, S.; von Tycowicz, C.; Polthier, K.; Weiser, M., Reducing memory requirements in scientific computing and optimal control, (Carraro, T.; Geiger, M.; Körkel, S.; Rannacher, R., Multiple Shooting and Time Domain Decomposition Methods (2015), Springer), 263-287 · Zbl 1337.65052
[15] Grüne, L.; Schaller, M.; Schiela, A., Sensitivity analysis of optimal control for a class of parabolic PDEs motivated by model predictive control, SIAM J. Control Optim., 57, 4, 2753-2774 (2019) · Zbl 1420.49025
[16] Lubkoll, L.; Schiela, A.; Weiser, M., An optimal control problem in polyconvex hyperelasticity, SIAM J. Control Optim., 52, 3, 1403-1422 (2014) · Zbl 1298.49065
[17] Lubkoll, L.; Schiela, A.; Weiser, M., An affine covariant composite step method for optimization with PDEs as equality constraints, Optim. Methods Softw., 32, 5, 1132-1161 (2017) · Zbl 1380.49033
[18] Müller, J.; Götschel, S.; Maierhofer, C.; Weiser, M., Determining the material parameters for the reconstruction of defects in carbon fiber reinforced polymers from data measured by flash thermography, (AIP Conference Proceedings (2017)), 100006
[19] Müller, G.; Schiela, A., On the control of time discretized dynamic contact problems, Comput. Optim. Appl., 68, 2, 243-287 (2017) · Zbl 1383.49002
[20] Schenkl, S.; Muggenthaler, H.; Hubig, M.; Erdmann, B.; Weiser, M.; Zachow, S.; Heinrich, A.; Güttler, F.; Teichgräber, U.; Mall, G., Automatic CT-based finite element model generation for temperature-based death time estimation: feasibility study and sensitivity analysis, Int. J. Leg. Med., 131, 3, 699-712 (2017)
[21] Schenk, O.; Wächter, A.; Weiser, M., Inertia revealing preconditioning for large-scale nonconvex constrained optimization, SIAM J. Sci. Comput., 31, 2, 939-960 (2008) · Zbl 1194.35029
[22] Schiela, A.; Weiser, M., Barrier methods for a control problem from hyperthermia treatment planning, (Diehl, M.; Glineur, F.; Jarlebring, E.; Michiels, W., Recent Advances in Optimization and its Applications in Engineering (2010), Springer), 419-428
[23] Schneck, J.; Weiser, M.; Wende, F., Impact of Mixed Precision and Storage Layout on Additive Schwarz SmoothersReport 18-62 (2018), Zuse Institute Berlin
[24] Weiser, M., Pointwise nonlinear scaling for reaction-diffusion equations, Appl. Numer. Math., 59, 8, 1858-1869 (2009) · Zbl 1167.65439
[25] Weiser, M., Optimization and identification in regional hyperthermia, Int. J. Appl. Electromagn. Mech., 30, 265-275 (2009)
[26] Weiser, M., On goal-oriented adaptivity for elliptic optimal control problems, Optim. Methods Softw., 28, 13, 969-992 (2013) · Zbl 1278.65158
[27] Weiser, M.; Erdmann, B.; Schenkl, S.; Muggenthaler, H.; Hubig, M.; Mall, G.; Zachow, S., Uncertainty in temperature-based determination of time of death, Heat Mass Transfer, 54, 9, 2815-2826 (2018)
[28] Weiser, M.; Freytag, Y.; Erdmann, B.; Hubig, M.; Mall, G., Optimal design of experiments for estimating the time of death in forensic medicine, Inverse Problems, 34, 12, 125005 (2018) · Zbl 1408.62186
[29] Weiser, M.; Gänzler, T.; Schiela, A., Control reduced primal interior point methods, Comput. Optim. Appl., 41, 1, 127-145 (2008) · Zbl 1190.90278
[30] Weiser, M.; Götschel, S., State trajectory compression for optimal control with parabolic PDEs, SIAM J. Sci. Comput., 34, 1, A161-A184 (2012) · Zbl 1237.49040
[31] Weiser, M.; Scacchi, S., Spectral deferred correction methods for adaptive electro-mechanical coupling in cardiac simulation, (Progress in Industrial Mathematics at ECMI 2014 (2017), Springer), 321-328
[32] Nitsche, J., Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind, Abh. Math. Univ. Hambg., 36, 9-15 (1971) · Zbl 0229.65079
[33] Blyth, M.; Pozrikidis, C., A Lobatto interpolation grid over the triangle, IMA J. Appl. Math., 1-17 (2005)
[34] Zumbusch, G., Symmetric hierarchical polynomials and the adaptive h-p-version, (Ilin, A.; Scott, L., Proc. of the Third Int. Conf. on Spectral and High Order Methods. Proc. of the Third Int. Conf. on Spectral and High Order Methods, Houston Journal of Mathematics (1996)), 529-540
[35] Nédélec, J.-C., Mixed finite elements in \(\mathbb{R}^3\), Numer. Math., 35, 3, 315-341 (1980) · Zbl 0419.65069
[36] Morley, L., The triangular equilibrium element in the solution of plate bending problems, Aero. Quart., 19, 2, 149-169 (1968)
[37] Schäling, B., The Boost C++ Libraries (2014), XML Press
[38] Bank, R. E.; Weiser, A., Some a posteriori error estimators for elliptic partial differential equations, Math. Comp., 44, 170, 283-301 (1985), URL http://www.jstor.org/stable/2007953 · Zbl 0569.65079
[39] Bramble, J.; Pasciak, J.; Xu, J., Parallel multilevel preconditioners, Math. Comp., 55, 1-22 (1990) · Zbl 0703.65076
[40] Shewchuk, J., Triangle: Engineering a 2D quality mesh generator and Delaunay triangulator, (Lin, M.; Manocha, D., Applied Computational Geometry: Towards Geometric Engineering. Applied Computational Geometry: Towards Geometric Engineering, Lecture Notes in Computer Science, vol. 1148 (1996), Springer), 203-222
[41] Avila et al., L., The VTK User’s Guide (2010), Kitware
[42] Stalling, D.; Westerhoff, M.; Hege, H.-C., Amira: A highly interactive system for visual data analysis, (Hansen, C.; Johnson, C., The Visualization Handbook (2005), Elsevier), 749-767
[43] Geuzaine, C.; Remacle, J.-F., Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities, Internat. J. Numer. Methods Engrg., 79, 11, 1309-1331 (2009) · Zbl 1176.74181
[44] Ayachit, U., The paraview guide: A parallel visualization application (2015)
[45] Deuflhard, P.; Nowak, U., Extrapolation integrators for quasilinear implicit ODEs, (Deuflhard, P.; Engquist, B., Large Scale Scientific Computing (1987), Birkhäuser: Birkhäuser Boston), 37-50 · Zbl 0617.65078
[46] Dutt, A.; Greengard, L.; Rokhlin, V., Spectral deferred correction methods for ordinary differential equations, BIT, 40, 2, 241-266 (2000) · Zbl 0959.65084
[47] Weiser, M., Faster SDC convergence on non-equidistant grids by DIRK sweeps, BIT, 55, 4, 1219-1241 (2015) · Zbl 1332.65103
[48] Colli Franzone, P.; Pavarino, L.; Scacchi, S., Mathematical Cardiac Electrophysiology (2014), Springer · Zbl 1318.92002
[49] Colli Franzone, P.; Deuflhard, P.; Erdmann, B.; Lang, J.; Pavarino, L., Adaptivity in space and time for reaction-diffusion systems in electrocardiology, SIAM J. Sci. Comput., 28, 3, 942-962 (2006) · Zbl 1114.65110
[50] Deuflhard, P.; Erdmann, B.; Roitzsch, R.; Lines, G., Adaptive finite element simulation of ventricular dynamics, Comput. Vis. Sci., 12, 201-205 (2009)
[51] Emmett, M.; Minion, M., Toward an efficient parallel in time method for partial differential equations, Comm. Appl. Math. Comput. Sci., 7, 1, 105-132 (2012) · Zbl 1248.65106
[52] Schiela, A.; Günther, A., An interior point algorithm with inexact step computation in function space for state constrained optimal control, Numer. Math., 119, 2, 373-407 (2011) · Zbl 1243.65072
[53] Puso, M.; Laursen, T., A 3D contact smoothing method using Gregory patches, Internat. J. Numer. Methods Engrg., 54, 1161-1194 (2002) · Zbl 1098.74711
[54] Hamann, B.; Farin, G.; Nielson, G., A parametric triangular patch based on generalized conics, (Farin, G., NURBS for Curve and Surface Design (1991), SIAM), 75-85 · Zbl 0767.68102
[55] Yserentant, H., On the multi-level splitting of finite element spaces, Numer. Math., 49, 379-412 (1986) · Zbl 0608.65065
[56] Rogers, J. M.; McCulloch, A. D., A collocation-Galerkin finite element model of cardiac action potential propagation, IEEE Trans. Biomed. Eng., 41, 743-757 (1994)
[57] Hooks, D. A.; Trew, M. L., Construction and validation of a plunge electrode array for three-dimensional determination of conductivity in the heart., IEEE Trans. Biomed. Eng., 55, 2 Pt 1, 626-635 (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.