×

zbMATH — the first resource for mathematics

JuSFEM: a Julia-based open-source package of parallel smoothed finite element method (S-FEM) for elastic problems. (English) Zbl 07288724
Summary: The Smoothed Finite Element Method (S-FEM) proposed by Liu G.R. can achieve more accurate results than the conventional FEM. Currently, much commercial software and many open-source packages have been developed to analyze various science and engineering problems using the FEM. However, there is little work focusing on designing and developing software or packages for the S-FEM. In this paper, we design and implement an open-source package of the parallel S-FEM for elastic problems by utilizing the Julia language on multi-core CPU. The Julia language is a fast, easy-to-use, and open-source programming language that was originally designed for high-performance computing. We term our package as juSFEM. To the best of the authors’ knowledge, juSFEM is the first package of parallel S-FEM developed with the Julia language. To verify the correctness and evaluate the efficiency of juSFEM, two groups of benchmark tests are conducted. The benchmark results show that (1) juSFEM can achieve accurate results when compared to commercial FEM software ABAQUS, and (2) juSFEM only requires 543 s to calculate the displacements of a 3D elastic cantilever beam model which is composed of approximately 2 million tetrahedral elements, while in contrast the commercial FEM software needs 930 s for the same calculation model; (3) the parallel juSFEM executed on the 24-core CPU is approximately \(20 \times\) faster than the corresponding serial version. Moreover, the structure and function of juSFEM are easily modularized, and the code in juSFEM is clear and readable, which is convenient for further development.

MSC:
68-XX Computer science
74-XX Mechanics of deformable solids
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Roy, R.; Hinduja, S.; Teti, R., Recent advances in engineering design optimisation: Challenges and future trends, CIRP Ann., 57, 2, 697-715 (2008)
[2] Xu, F.; Schillinger, D.; Kamensky, D.; Varduhn, V.; Wang, g.; Hsu, M.-C., The tetrahedral finite cell method for fluids: Immersogeometric analysis of turbulent flow around complex geometries, Comput. & Fluids, 141, 135-154 (2016) · Zbl 1390.76372
[3] LeVeque, R. J., Finite Volume Methods for Hyperbolic Problems, Vol. 31 (2002), Cambridge University Press
[4] He, Z.; Liu, G.; Zhong, Z.; Cui, X.; Zhang, G.; Cheng, A., A coupled edge-/face-based smoothed finite element method for structural-acoustic problems, Appl. Acoust., 71, 10, 955-964 (2010)
[5] Wihler, T., Locking-free adaptive discontinuous Galerkin FEM for linear elasticity problems, Math. Comp., 75, 255, 1087-1102 (2006) · Zbl 1088.74047
[6] Liu, G.-R.; Trung, N., Smoothed Finite Element Methods (2016), CRC Press
[7] Yoo, J. W.; Moran, B.; Chen, J. S., Stabilized conforming nodal integration in the natural-element method, Internat. J. Numer. Methods Engrg., 60, 5, 861-890 (2004) · Zbl 1060.74677
[8] Nguyen-Thoi, T.; Liu, G.; Lam, K.; Zhang, G., A face-based smoothed finite element method (FS-FEM) for 3D linear and geometrically non-linear solid mechanics problems using 4-node tetrahedral elements, Internat. J. Numer. Methods Engrg., 78, 3, 324-353 (2009) · Zbl 1183.74299
[9] Cai, Y.; Cui, X.; Li, G.; Liu, W., A parallel finite element procedure for contact-impact problems using edge-based smooth triangular element and GPU, Comput. Phys. Comm., 225, 47-58 (2018)
[10] Phan-Dao, H.; Nguyen-Xuan, H.; Thai-Hoang, C.; Nguyen-Thoi, T.; Rabczuk, T., An edge-based smoothed finite element method for analysis of laminated composite plates, Int. J. Comput. Methods, 10, 01, Article 1340005 pp. (2013) · Zbl 1359.74434
[11] Li, Y.; Yue, J.; Niu, R.; Liu, G., Automatic mesh generation for 3D smoothed finite element method (S-FEM) based on the weaken-weak formulation, Adv. Eng. Softw., 99, 111-120 (2016)
[12] Sanner, M. F., Python: a programming language for software integration and development, J. Mol. Graph. Model., 17, 1, 57-61 (1999)
[13] Bezanson, J.; Edelman, A.; Karpinski, S.; Shah, V. B., Julia: A fresh approach to numerical computing, SIAM Rev., 59, 1, 65-98 (2017) · Zbl 1356.68030
[14] Zienkiewicz, O.; Taylor, R.; Too, J., Reduced integration technique in general analysis of plates and shells, Internat. J. Numer. Methods Engrg., 3, 2, 275-290 (1971) · Zbl 0253.73048
[15] Liu, J.; Zhang, Z.-Q.; Zhang, G., A smoothed finite element method (S-FEM) for large-deformation elastoplastic analysis, Int. J. Comput. Methods, 12, 04, Article 1540011 pp. (2015) · Zbl 1359.74422
[16] Chen, L.; Liu, G.; Nourbakhsh-Nia, N.; Zeng, K., A singular edge-based smoothed finite element method (ES-FEM) for bimaterial interface cracks, Comput. Mech., 45, 2-3, 109 (2010) · Zbl 1398.74316
[17] Chen, L.; Liu, G.; Zeng, K.; Zhang, J., A novel variable power singular element in G space with strain smoothing for bi-material fracture analyses, Eng. Anal. Bound. Elem., 35, 12, 1303-1317 (2011) · Zbl 1259.74028
[18] Liu, G.; Nguyen-Thoi, T.; Nguyen-Xuan, H.; Lam, K., A node-based smoothed finite element method (NS-FEM) for upper bound solutions to solid mechanics problems, Comput. Struct., 87, 1-2, 14-26 (2009)
[19] Li, W.; Chai, Y.; Lei, M.; Liu, G., Analysis of coupled structural-acoustic problems based on the smoothed finite element method (S-FEM), Eng. Anal. Bound. Elem., 42, 84-91 (2014) · Zbl 1297.74040
[20] Li, E.; Zhang, Z.; He, Z.; Xu, X.; Liu, G.; Li, Q., Smoothed finite element method with exact solutions in heat transfer problems, Int. J. Heat Mass Transfer, 78, 1219-1231 (2014)
[21] Cui, X.; Li, Z.; Feng, H.; Feng, S., Steady and transient heat transfer analysis using a stable node-based smoothed finite element method, Int. J. Therm. Sci., 110, 12-25 (2016)
[22] He, Z.; Liu, G.; Zhong, Z.; Zhang, G.; Cheng, A., A coupled ES-FEM/BEM method for fluid-structure interaction problems, Eng. Anal. Bound. Elem., 35, 1, 140-147 (2011) · Zbl 1259.74030
[23] Zeng, W.; Liu, G., Smoothed finite element methods (S-FEM): an overview and recent developments, Arch. Comput. Methods Eng., 25, 2, 397-435 (2018) · Zbl 1398.65312
[24] Liu, G.; Nguyen-Thoi, T.; Lam, K., An edge-based smoothed finite element method (ES-FEM) for static, free and forced vibration analyses of solids, J. Sound Vib., 320, 4-5, 1100-1130 (2009)
[25] Liu, G.; Dai, K.; Nguyen, T. T., A smoothed finite element method for mechanics problems, Comput. Mech., 39, 6, 859-877 (2007) · Zbl 1169.74047
[26] Shewchuk, J.; Dey, T. K.; Cheng, S.-W., Delaunay Mesh Generation (2016), Chapman and Hall/CRC
[27] The julia programming language (2019)
[28] Pine, D. J., Introduction to Python for Science and Engineering (2019), CRC Press
[29] Frondelius, T.; Aho, J., JuliaFEM-open source solver for both industrial and academia usage, Rakenteiden Mekaniikka, 50, 3, 229-233 (2017)
[30] Otter, M.; Elmqvist, H.; Zimmer, D.; Laughman, C., Thermodynamic property and fluid modeling with modern programming language construct, (Proceedings of the 13th International Modelica Conference, No. 157. Proceedings of the 13th International Modelica Conference, No. 157, Regensburg, Germany, March 4-6, 2019 (2019), Linköping University Electronic Press)
[31] A. Lage-Freitas, A.C. Frery, N.D.C. Oliveira, R.P. Ribeiro, R. Sarmento, CloudArray: Easing huge image processing, in: 2016 IEEE International Geoscience and Remote Sensing Symposium, IGARSS, 2016, pp. 631-634.
[32] Chai, L.; Gao, Q.; Panda, D. K., Understanding the impact of multi-core architecture in cluster computing: A case study with intel dual-core system, (Seventh IEEE International Symposium on Cluster Computing and the Grid. Seventh IEEE International Symposium on Cluster Computing and the Grid, CCGrid’07 (2007), IEEE), 471-478
[33] Julia benchmarks (2019)
[34] Si, H., TetGen, a Delaunay-based quality tetrahedral mesh generator, ACM Trans. Math. Softw. (TOMS), 41, 2, 11 (2015) · Zbl 1369.65157
[35] Julia 1.1 Documentation (2019)
[36] A. Jain, N. Goharian, On parallel implementation of sparse matrix information retrieval engine, in: Proceedings of the International Multi-Conferences in Computer Science: On Information and Knowledge Engineering, IKE, 2002.
[37] Intel® Math Kernel Library (2019)
[38] Pardiso.jl (2019)
[39] Paraview (2019)
[40] Writevtk.jl (2019)
[41] Plotlyjs.jl (2019)
[42] Burylov, I.; Chuvelev, M.; Greer, B.; Henry, G.; Kuznetsov, S.; Sabanin, B., Intel performance libraries: Multi-core-ready software for numeric-intensive computation, Intel Technol. J., 11, 4 (2007)
[43] Schenk, O.; Gärtner, K., Solving unsymmetric sparse systems of linear equations with PARDISO, Future Gener. Comput. Syst., 20, 3, 475-487 (2004)
[44] Nickolls, J.; Buck, I.; Garland, M., Scalable parallel programming, (2008 IEEE Hot Chips 20 Symposium. 2008 IEEE Hot Chips 20 Symposium, HCS (2008), IEEE), 40-53
[45] Mei, G.; Xu, N.; Qin, J.; Wang, B.; Qi, P., A survey of internet of things (IoT) for geo-hazards prevention: applications, technologies, and challenges, IEEE Internet Things J., 1-16 (2019)
[46] Nyssen, C., An efficient and accurate iterative method, allowing large incremental steps, to solve elasto-plastic problems, (Computational Methods in Nonlinear Structural and Solid Mechanics (1981), Elsevier), 63-71 · Zbl 0456.73067
[47] Garland, M.; Le Grand, S.; Nickolls, J.; Anderson, J.; Hardwick, J.; Morton, S.; Phillips, E.; Zhang, Y.; Volkov, V., Parallel computing experiences with CUDA, IEEE Micro, 28, 4, 13-27 (2008)
[48] Ge, W.; Xu, J.; Xiong, Q.; Wang, X.; Chen, F.; Wang, L.; Hou, C.; Xu, M.; Li, J., Multi-scale continuum-particle simulation on CPU-GPU hybrid supercomputer, (GPU Solutions to Multi-Scale Problems in Science and Engineering (2013), Springer), 143-161
[49] Gui-rong, L.; Gui-yong, Z., Smoothed Point Interpolation Methods: G Space Theory and Weakened Weak Forms (2013), World Scientific
[50] Liu, G., AG space theory and a weakened weak (W2) form for a unified formulation of compatible and incompatible methods: Part II applications to solid mechanics problems, Internat. J. Numer. Methods Engrg., 81, 9, 1127-1156 (2010) · Zbl 1183.74359
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.