×

zbMATH — the first resource for mathematics

Open-source immersogeometric analysis of fluid-structure interaction using FEniCS and tIGAr. (English) Zbl 1455.74088
Summary: We recently developed the open-source library tIGAr, which extends the FEniCS finite element automation framework to isogeometric analysis. The present contribution demonstrates the utility of tIGAr in complex problems by applying it to immersogeometric fluid-structure interaction (FSI) analysis. This application is implemented as the new open-source library CouDALFISh (Coupling, via Dynamic Augmented Lagrangian, of Fluids with Immersed Shells, pronounced “cuttlefish”), which uses the dynamic augmented Lagrangian (DAL) method to couple fluid and shell structure subproblems. The DAL method was introduced previously, over a series of papers largely focused on heart valve FSI, but an open-source implementation making extensive use of automation to compile numerical routines from high-level mathematical descriptions brings newfound transparency and reproducibility to these earlier developments on immersogeometric FSI analysis. The portions of CouDALFISh that do not use code generation also illustrate how a framework like FEniCS remains useful even when some functionality is outside the scope of its standard workflow. This paper summarizes the workings of CouDALFISh and documents a variety of benchmarks demonstrating its accuracy. Although the implementation emphasizes transparency and extensibility over performance, it is nonetheless demonstrated to be sufficient to simulate 3D FSI of an idealized aortic heart valve. Source code will be maintained at https://github.com/david-kamensky/CouDALFISh.
MSC:
74S22 Isogeometric methods applied to problems in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74L15 Biomechanical solid mechanics
92C10 Biomechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Kamensky, D.; Hsu, M.-C.; Schillinger, D.; Evans, J. A.; Aggarwal, A.; Bazilevs, Y.; Sacks, M. S.; Hughes, T. J.R., An immersogeometric variational framework for fluid-structure interaction: Application to bioprosthetic heart valves, Comput. Methods Appl. Mech. Engrg., 284, 1005-1053 (2015) · Zbl 1423.74273
[2] Hsu, M.-C.; Kamensky, D.; Bazilevs, Y.; Sacks, M. S.; Hughes, T. J.R., Fluid-structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation, Comput. Mech., 54, 1055-1071 (2014) · Zbl 1311.74039
[3] Kamensky, D.; Hsu, M.-C.; Yu, Y.; Evans, J. A.; Sacks, M. S.; Hughes, T. J.R., Immersogeometric cardiovascular fluid-structure interaction analysis with divergence-conforming B-splines, Comput. Methods Appl. Mech. Engrg., 314, 408-472 (2017), Special Issue on Biological Systems Dedicated to William S. Klug · Zbl 1439.76077
[4] Hughes, T. J.R.; Cottrell, J. A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 4135-4195 (2005) · Zbl 1151.74419
[5] Cottrell, J. A.; Hughes, T. J.R.; Bazilevs, Y., Isogeometric Analysis: Toward Integration of CAD and FEA (2009), Wiley: Wiley Chichester · Zbl 1378.65009
[6] Rank, E.; Ruess, M.; Kollmannsberger, S.; Schillinger, D.; Düster, A., Geometric modeling, isogeometric analysis and the finite cell method, Comput. Methods Appl. Mech. Engrg., 249-252, 104-115 (2012) · Zbl 1348.74340
[7] Parvizian, J.; Düster, A.; Rank, E., Finite cell method, Comput. Mech., 41, 1, 121-133 (2007) · Zbl 1162.74506
[8] Yu, Y.; Kamensky, D.; Hsu, M.-C.; Lu, X. Y.; Bazilevs, Y.; Hughes, T. J.R., Error estimates for projection-based dynamic augmented Lagrangian boundary condition enforcement, with application to fluid-structure interaction, Math. Models Methods Appl. Sci., 28, 12, 2457-2509 (2018) · Zbl 1411.74059
[9] Kamensky, D.; Evans, J. A.; Hsu, M.-C., Stability and conservation properties of collocated constraints in immersogeometric fluid-thin structure interaction analysis, Commun. Comput. Phys., 18, 1147-1180 (2015) · Zbl 1373.76093
[10] Hestenes, M. R., Multiplier and gradient methods, J. Optim. Theory Appl., 4, 5, 303-320 (1969) · Zbl 0174.20705
[11] Powell, M. J.D., A method for nonlinear constraints in minimization problems, (Fletcher, R., Optimization (1969), Academic Press: Academic Press New York), 283-298
[12] Hsu, M.-C.; Kamensky, D.; Xu, F.; Kiendl, J.; Wang, C.; Wu, M. C.H.; Mineroff, J.; Reali, A.; Bazilevs, Y.; Sacks, M. S., Dynamic and fluid-structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models, Comput. Mech., 1-15 (2015) · Zbl 1325.74048
[13] Xu, F.; Morganti, S.; Zakerzadeh, R.; Kamensky, D.; Auricchio, F.; Reali, A.; Hughes, T. J.R.; Sacks, M. S.; Hsu, M.-C., A framework for designing patient-specific bioprosthetic heart valves using immersogeometric fluid-structure interaction analysis, Int. J. Numer. Methods Biomed. Eng., 34, 4, Article e2938 pp. (2018)
[14] Wu, M. C.H.; Muchowski, H. M.; Johnson, E. L.; Rajanna, M. R.; Hsu, M.-C., Immersogeometric fluid-structure interaction modeling and simulation of transcatheter aortic valve replacement, Comput. Methods Appl. Mech. Engrg., 357, 112556 (2019) · Zbl 1442.74067
[15] Wu, M. C.H.; Kamensky, D.; Wang, C.; Herrema, A. J.; Xu, F.; Pigazzini, M. S.; Verma, A.; Marsden, A. L.; Bazilevs, Y.; Hsu, M.-C., Optimizing fluid-structure interaction systems with immersogeometric analysis and surrogate modeling: Application to a hydraulic arresting gear, Comput. Methods Appl. Mech. Engrg., 316, 668-693 (2017), Special Issue on Isogeometric Analysis: Progress and Challenges · Zbl 1439.74117
[16] Kamensky, D.; Evans, J. A.; Hsu, M.-C.; Bazilevs, Y., Projection-based stabilization of interface lagrange multipliers in immersogeometric fluid-thin structure interaction analysis, with application to heart valve modeling, Comput. Math. Appl., 74, 9, 2068-2088 (2017), Advances in Mathematics of Finite Elements, honoring 90th birthday of Ivo Babuška · Zbl 1397.65274
[17] Peskin, C. S., The immersed boundary method, Acta Numer., 11, 479-517 (2002) · Zbl 1123.74309
[18] Mittal, R.; Iaccarino, G., Immersed boundary methods, Annu. Rev. Fluid Mech., 37, 239-261 (2005) · Zbl 1117.76049
[19] Sotiropoulos, F.; Yang, X., Immersed boundary methods for simulating fluid-structure interaction, Prog. Aerosp. Sci., 65, 1-21 (2014)
[20] Griffith, B. E.; Patankar, N. A., Immersed methods for fluid-structure interaction, Annu. Rev. Fluid Mech., 52, 1, null (2020)
[21] Logg, A.; Mardal, K.-A.; Wells, G. N., (Logg, A.; Mardal, K.-A.; Wells, G. N., Automated Solution of Differential Equations by the Finite Element Method (2012), Springer)
[22] Alnæs, M. S.; Logg, A.; Ølgaard, K. B.; Rognes, M. E.; Wells, G. N., Unified form language: A domain-specific language for weak formulations of partial differential equations, ACM Trans. Math. Software, 40, 2, 9:1-9:37 (2014) · Zbl 1308.65175
[23] Kirby, R. C.; Logg, A., A compiler for variational forms, ACM Trans. Math. Software, 32, 3, 417-444 (2006)
[24] Logg, A.; Wells, G. N., DOLFIN: Automated finite element computing, ACM Trans. Math. Software, 37, 2, 20:1-20:28 (2010) · Zbl 1364.65254
[25] Richardson, C. N.; Sime, N.; Wells, G. N., Scalable computation of thermomechanical turbomachinery problems, Finite Elem. Anal. Des., 155, 32-42 (2019)
[26] Bercea, G.-T.; McRae, A. T.T.; Ham, D. A.; Mitchell, L.; Rathgeber, F.; Nardi, L.; Luporini, F.; Kelly, P. H.J., A structure-exploiting numbering algorithm for finite elements on extruded meshes, and its performance evaluation in Firedrake, Geosci. Model Dev., 9, 10, 3803-3815 (2016)
[27] Homolya, M.; Mitchell, L.; Luporini, F.; Ham, D., TSFC: A structure-preserving form compiler, SIAM J. Sci. Comput., 40, 3, C401-C428 (2018) · Zbl 1388.68020
[28] Homolya, M.; Ham, D., A parallel edge orientation algorithm for quadrilateral meshes, SIAM J. Sci. Comput., 38, 5, S48-S61 (2016) · Zbl 1404.65266
[29] McRae, A.; Bercea, G.; Mitchell, L.; Ham, D.; Cotter, C., Automated generation and symbolic manipulation of tensor product finite elements, SIAM J. Sci. Comput., 38, 5, S25-S47 (2016) · Zbl 1352.65615
[30] Kamensky, D.; Bazilevs, Y., TIGAr: Automating isogeometric analysis with FEniCS, Comput. Methods Appl. Mech. Engrg., 344, 477-498 (2019) · Zbl 1440.65282
[31] https://github.com/david-kamensky/tIGAr. tIGAr source code.
[32] Yang, H.; Abali, B. E.; Timofeev, D.; Müller, W. H., Determination of metamaterial parameters by means of a homogenization approach based on asymptotic analysis, Contin. Mech. Thermodyn. (2019)
[33] ten Eikelder, M. F.P.; Bazilevs, Y.; Akkerman, I., A theoretical framework for discontinuity capturing: Joining variational multiscale analysis and variation entropy theory, Comput. Methods Appl. Mech. Engrg., 112664 (2019) · Zbl 1441.49016
[34] Bazilevs, Y.; Kamensky, D.; Moutsanidis, G.; Shende, S., Residual-based shock capturing in solids, Comput. Methods Appl. Mech. Engrg., 358, 112638 (2020) · Zbl 1441.74101
[35] Evans, J. A.; Kamensky, D.; Bazilevs, Y., Variational multiscale modeling with discretely divergence-free subscales, (Society of Engineering Science Technical Meeting (2019)) · Zbl 1457.76098
[36] W. Zhang, T. Bui-Thanh, M.S. Sacks, A machine learning approach for soft tissue remodeling, in: Proceedings of FEniCS’19, 2019.
[37] https://github.com/david-kamensky/CouDALFISh. CouDALFISh source code.
[38] Simo, J. C.; Wriggers, P.; Taylor, R. L., A perturbed Lagrangian formulation for the finite element solution of contact problems, Comput. Methods Appl. Mech. Engrg., 50, 2, 163-180 (1985) · Zbl 0552.73097
[39] Chung, J.; Hulbert, G. M., A time integration algorithm for structural dynamics with improved numerical dissipation: The generalized-\( \alpha\) method, J. Appl. Mech., 60, 371-735 (1993) · Zbl 0775.73337
[40] Jansen, K. E.; Whiting, C. H.; Hulbert, G. M., A generalized-\( \alpha\) method for integrating the filtered Navier-Stokes equations with a stabilized finite element method, Comput. Methods Appl. Mech. Engrg., 190, 305-319 (2000) · Zbl 0973.76048
[41] Boilevin-Kayl, L.; Fernández, M.; Gerbeau, J.-F., A loosely coupled scheme for fictitious domain approximations of fluid-structure interaction problems with immersed thin-walled structures, SIAM J. Sci. Comput., 41, 2, B351-B374 (2019) · Zbl 1414.65027
[42] Goldstein, D.; Handler, R.; Sirovich, L., Modeling a no-slip flow boundary with an external force field, J. Comput. Phys., 105, 2, 354-366 (1993) · Zbl 0768.76049
[43] Borden, M. J.; Scott, M. A.; Evans, J. A.; Hughes, T. J.R., Isogeometric finite element data structures based on Bézier extraction of NURBS, Internat. J. Numer. Methods Engrg., 87, 15-47 (2011) · Zbl 1242.74097
[44] Scott, M. A.; Borden, M. J.; Verhoosel, C. V.; Sederberg, T. W.; Hughes, T. J.R., Isogeometric finite element data structures based on Bézier extraction of T-splines, Internat. J. Numer. Methods Engrg., 88, 126-156 (2011) · Zbl 1242.65243
[45] Schillinger, D.; Ruthala, P. K.; Nguyen, L. H., Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations, Internat. J. Numer. Methods Engrg., 108, 6, 515-534 (2016)
[46] Kiendl, J.; Bletzinger, K.-U.; Linhard, J.; Wüchner, R., Isogeometric shell analysis with Kirchhoff-Love elements, Comput. Methods Appl. Mech. Engrg., 198, 3902-3914 (2009) · Zbl 1231.74422
[47] Kiendl, J., Isogeometric Analysis and Shape Optimal Design of Shell Structures (2011), Lehrstuhl für Statik, Technische Universität München, (PhD thesis)
[48] Kiendl, J.; Hsu, M.-C.; Wu, M. C.H.; Reali, A., Isogeometric Kirchhoff-Love shell formulations for general hyperelastic materials, Comput. Methods Appl. Mech. Engrg., 291, 0, 280-303 (2015) · Zbl 1423.74177
[49] Buganza Tepole, A.; Kabaria, H.; Bletzinger, K.-U.; Kuhl, E., Isogeometric Kirchhoff-Love shell formulations for biological membranes, Comput. Methods Appl. Mech. Engrg., 0 (2015) · Zbl 1423.74530
[50] Hale, J. S.; Brunetti, M.; Bordas, S. P.A.; Maurini, C., Simple and extensible plate and shell finite element models through automatic code generation tools, Comput. Struct., 209, 163-181 (2018)
[51] https://github.com/david-kamensky/ShNAPr. ShNAPr source code.
[52] Kamensky, D.; Behzadinasab, M.; Foster, J. T.; Bazilevs, Y., Peridynamic modeling of frictional contact, J. Peridynamics Nonlocal Model. (2019)
[53] Kamensky, D.; Xu, F.; Lee, C.-H.; Yan, J.; Bazilevs, Y.; Hsu, M.-C., A contact formulation based on a volumetric potential: Application to isogeometric simulations of atrioventricular valves, Comput. Methods Appl. Mech. Engrg., 330, 522-546 (2018) · Zbl 1439.74224
[54] Stavrev, A., The Role of Higher-Order Geometry Approximation and Accurate Quadrature in NURBS Based Immersed Boundary Methods (2012), Technische Universität München: Technische Universität München Munich, Germany, (Master’s thesis)
[55] https://github.com/david-kamensky/VarMINT. VarMINT source code.
[56] Bazilevs, Y.; Calo, V. M.; Cottrel, J. A.; Hughes, T. J.R.; Reali, A.; Scovazzi, G., Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows, Comput. Methods Appl. Mech. Engrg., 197, 173-201 (2007) · Zbl 1169.76352
[57] Bazilevs, Y.; Calo, V. M.; Hughes, T. J.R.; Zhang, Y., Isogeometric fluid-structure interaction: theory, algorithms, and computations, Comput. Mech., 43, 3-37 (2008) · Zbl 1169.74015
[58] Akkerman, I.; Bazilevs, Y.; Calo, V. M.; Hughes, T. J.R.; Hulshoff, S., The role of continuity in residual-based variational multiscale modeling of turbulence, Comput. Mech., 41, 371-378 (2008) · Zbl 1162.76355
[59] Bazilevs, Y.; Michler, C.; Calo, V. M.; Hughes, T. J.R., Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes, Comput. Methods Appl. Mech. Engrg., 199, 780-790 (2010) · Zbl 1406.76023
[60] Bazilevs, Y.; Akkerman, I., Large eddy simulation of turbulent Taylor-Couette flow using isogeometric analysis and the residual-based variational multiscale method, J. Comput. Phys., 229, 3402-3414 (2010) · Zbl 1290.76037
[61] Takizawa, K.; Bazilevs, Y.; Tezduyar, T. E., Space-time and ALE-VMS techniques for patient-specific cardiovascular fluid-structure interaction modeling, Arch. Comput. Methods Eng., 19, 171-225 (2012) · Zbl 1354.92023
[62] Bazilevs, Y.; Hsu, M.-C.; Takizawa, K.; Tezduyar, T. E., ALE-VMS and ST-VMS methods for computer modeling of wind-turbine rotor aerodynamics and fluid-structure interaction, Math. Models Methods Appl. Sci., 22, 1230002 (2012) · Zbl 1404.76187
[63] Bazilevs, Y.; Hsu, M.-C.; Scott, M. A., Isogeometric fluid-structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines, Comput. Methods Appl. Mech. Engrg., 249-252, 28-41 (2012) · Zbl 1348.74094
[64] Hsu, M.-C.; Akkerman, I.; Bazilevs, Y., Wind turbine aerodynamics using ALE-VMS: Validation and the role of weakly enforced boundary conditions, Comput. Mech., 50, 499-511 (2012)
[65] Korobenko, A.; Hsu, M.-C.; Akkerman, I.; Bazilevs, Y., Aerodynamic simulation of vertical-axis wind turbines, J. Appl. Mech., 81, 021011 (2014)
[66] https://github.com/QimingZhu1992/IlliniFlow. IlliniFlow source code.
[67] Zhu, Q.; Yan, J., A moving-domain CFD solver in FEniCS with applications to tidal turbine simulations in turbulent flows, Comput. Math. Appl. (2019)
[68] Shih, T. M.; Tan, C. H.; Hwang, B. C., Effects of grid staggering on numerical schemes, Internat. J. Numer. Methods Fluids, 9, 2, 193-212 (1989) · Zbl 0661.76024
[69] van Opstal, T. M.; Yan, J.; Coley, C.; Evans, J. A.; Kvamsdal, T.; Bazilevs, Y., Isogeometric divergence-conforming variational multiscale formulation of incompressible turbulent flows, Comput. Methods Appl. Mech. Engrg., 316, 859-879 (2017), Special Issue on Isogeometric Analysis: Progress and Challenges · Zbl 1439.76036
[70] Bazilevs, Y.; Hughes, T. J.R., Weak imposition of Dirichlet boundary conditions in fluid mechanics, Comput. & Fluids, 36, 12-26 (2007) · Zbl 1115.76040
[71] Evans, J. A., Divergence-Free B-Spline Discretizations for Viscous Incompressible Flows (2011), University of Texas at Austin: University of Texas at Austin Austin, Texas, United States, (Ph.D. thesis)
[72] Hsu, M.-C.; Bazilevs, Y.; Calo, V. M.; Tezduyar, T. E.; Hughes, T. J.R., Improving stability of stabilized and multiscale formulations in flow simulations at small time steps, Comput. Methods Appl. Mech. Engrg., 199, 828-840 (2010) · Zbl 1406.76028
[73] Codina, R.; Principe, J.; Guasch, O.; Badia, S., Time dependent subscales in the stabilized finite element approximation of incompressible flow problems, Comput. Methods Appl. Mech. Engrg., 196, 2413-2430 (2007) · Zbl 1173.76335
[74] Brooks, A. N.; Hughes, T. J.R., Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 32, 199-259 (1982) · Zbl 0497.76041
[75] Tezduyar, T. E., Stabilized finite element formulations for incompressible flow computations, Adv. Appl. Mech., 28, 1-44 (1992) · Zbl 0747.76069
[76] Tezduyar, T. E.; Osawa, Y., Finite element stabilization parameters computed from element matrices and vectors, Comput. Methods Appl. Mech. Engrg., 190, 411-430 (2000) · Zbl 0973.76057
[77] Hsu, M.-C.; Akkerman, I.; Bazilevs, Y., Finite element simulation of wind turbine aerodynamics: Validation study using NREL phase VI experiment, Wind Energy (2014)
[78] Bazilevs, Y.; Takizawa, K.; Tezduyar, T. E., Computational Fluid-Structure Interaction: Methods and Applications (2013), Wiley: Wiley Chichester · Zbl 1286.74001
[79] Belytschko, T.; Stolarski, H.; Liu, W. K.; Carpenter, N.; Ong, J. S.-J., Stress projection for membrane and shear locking in shell finite elements, Comput. Methods Appl. Mech. Engrg., 51, 221-258 (1985) · Zbl 0581.73091
[80] Hesch, C.; Gil, A. J.; Arranz Carreño, A.; Bonet, J., On continuum immersed strategies for fluid-structure interaction, Comput. Methods Appl. Mech. Engrg., 247-248, 51-64 (2012) · Zbl 1352.76055
[81] Gil, A. J.; Arranz Carreño, A.; Bonet, J.; Hassan, O., An enhanced immersed structural potential method for fluid-structure interaction, J. Comput. Phys., 250, 178-205 (2013) · Zbl 1349.76608
[82] Wick, T., Flapping and contact FSI computations with the fluid-solid interface-tracking/interface-capturing technique and mesh adaptivity, Comput. Mech., 53, 1, 29-43 (2014) · Zbl 1309.74026
[83] Tezduyar, T.; Aliabadi, S.; Behr, M.; Johnson, A.; Mittal, S., Parallel finite-element computation of 3D flows, Computer, 26, 10, 27-36 (1993)
[84] Johnson, A. A.; Tezduyar, T. E., Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces, Comput. Methods Appl. Mech. Engrg., 119, 73-94 (1994) · Zbl 0848.76036
[85] Stein, K.; Tezduyar, T.; Benney, R., Mesh moving techniques for fluid-structure interactions with large displacements, J. Appl. Mech., 70, 58-63 (2003) · Zbl 1110.74689
[86] Stein, K.; Tezduyar, T. E.; Benney, R., Automatic mesh update with the solid-extension mesh moving technique, Comput. Methods Appl. Mech. Engrg., 193, 2019-2032 (2004) · Zbl 1067.74587
[87] CGAL User and Reference Manual (2018), CGAL Editorial Board
[88] Abali, B. E., Computational Reality (2017), Springer Singapore
[89] Esmaily-Moghadam, M.; Bazilevs, Y.; Hsia, T.-Y.; Vignon-Clementel, I. E.; Marsden, A. L., A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations, Comput. Mech., 48, 277-291 (2011) · Zbl 1398.76102
[90] Taylor, C. A.; Hughes, T. J.R.; Zarins, C. K., Effect of excercise on hemodynamic conditions in the abdominal aorta, J. Vas. Surg., 29, 1077-1089 (1999)
[91] Casquero, H.; Bona-Casas, C.; Gomez, H., NURBS-based numerical proxies for red blood cells and circulating tumor cells in microscale blood flow, Comput. Methods Appl. Mech. Engrg., 316, 646-667 (2017), Special Issue on Isogeometric Analysis: Progress and Challenges · Zbl 1439.76182
[92] Boilevin-Kayl, L.; Fernández, M. A.; Gerbeau, J.-F., Numerical methods for immersed FSI with thin-walled structures, Comput. & Fluids, 179, 744-763 (2019) · Zbl 1411.76053
[93] Saad, Y.; Schultz, M., GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7, 856-869 (1986) · Zbl 0599.65018
[94] Balay, S.; Abhyankar, S.; Adams, M. F.; Brown, J.; Brune, P.; Buschelman, K.; Dalcin, L.; Eijkhout, V.; Gropp, W. D.; Kaushik, D.; Knepley, M. G.; McInnes, L. C.; Rupp, K.; Smith, B. F.; Zampini, S.; Zhang, H., PETSc Web page (2015)
[95] Balay, S.; Abhyankar, S.; Adams, M. F.; Brown, J.; Brune, P.; Buschelman, K.; Dalcin, L.; Eijkhout, V.; Gropp, W. D.; Kaushik, D.; Knepley, M. G.; McInnes, L. C.; Rupp, K.; Smith, B. F.; Zampini, S.; Zhang, H., PETSc Users ManualTechnical Report ANL-95/11 - Revision 3.6 (2015), Argonne National Laboratory
[96] Balay, S.; Gropp, W. D.; McInnes, L. C.; Smith, B. F., Efficient management of parallelism in object oriented numerical software libraries, (Arge, E.; Bruaset, A. M.; Langtangen, H. P., Modern Software Tools in Scientific Computing (1997), Birkhäuser Press), 163-202 · Zbl 0882.65154
[97] Dalcin, L. D.; Paz, R. R.; Kler, P. A.; Cosimo, A., Parallel distributed computing using Python, Adv. Water Resour., 34, 9, 1124-1139 (2011), New Computational Methods and Software Tools
[98] igakit: Toolkit for IsoGeometric Analysis (IGA). https://bitbucket.org/dalcinl/igakit.
[99] Dalcin, L.; Collier, N.; Vignal, P.; Côrtes, A. M.A.; Calo, V. M., PetIGA: A framework for high-performance isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 308, 151-181 (2016) · Zbl 1439.65003
[100] Sarmiento, A. F.; Côrtes, A. M.A.; Garcia, D. A.; Dalcin, L.; Collier, N.; Calo, V. M., PetIGA-MF: A multi-field high-performance toolbox for structure-preserving B-splines spaces, J. Comput. Sci., 18, Supplement C, 117-131 (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.