zbMATH — the first resource for mathematics

Kolyvagin’s method for Chow groups and Kuga-Sato varieties. (English) Zbl 0729.14004
Let \(f\in S_{2r}^{new}(\Gamma_ 0(N))\) be a newform of weight 2r\(\geq 4\) with rational coefficients, M the \(\ell\)-adic representation of G(\({\bar {\mathbb{Q}}}/{\bar {\mathbb{Q}}})\) associated to f. It is a factor of \(H_{et}^{2r-1}(Y\otimes {\bar {\mathbb{Q}}},{\mathbb{Q}}_{\ell})\), where Y is a suitable smooth compactification of the (2r-2)-fold fibre product of the universal elliptic curve over the open modular curve Y(N). The \(\ell\)-adic Abel-Jacobi map (over any extension K of \({\mathbb{Q}})\) induces a map \[ \Phi:\;CH^ r(Y/K)_ 0\to H^ 1_{cont}(K,H_{et}^{2r- 1}(Y\otimes {\bar {\mathbb{Q}}},{\mathbb{Q}}_{\ell})(r))\to H^ 1_{cont}(K,M(r)), \] where \(CH^ r(Y/K)_ 0\) denotes the group of homologically trivial cycles on Y of codimension r defined over K, modulo rational equivalence. If K is an imaginary quadratic field in which all primes dividing N split, there is a Heegner cycle \(y\in CH^ r(Y/K)_ 0\otimes {\mathbb{Q}}.\)
Theorem. Suppose that \(\ell\) does not divide 2(2r-2)!N\(\phi\) (N). If \(\Phi\) (y) is nonzero, then \(Im(\Phi)\otimes {\mathbb{Q}}_{\ell}={\mathbb{Q}}_{\ell}.\Phi (y).\)
A similar statement is proved for newforms with not necessarily rational coefficients.
Reviewer: J.Nekovář

14C05 Parametrization (Chow and Hilbert schemes)
11F11 Holomorphic modular forms of integral weight
14C15 (Equivariant) Chow groups and rings; motives
Full Text: DOI EuDML
[1] Atkin, A.O.L., Lehner, J.: Hecke operators on {\(\Gamma\)}0(m). Math. Ann.185, 135–160 (1970) · Zbl 0185.15502
[2] Bloch, S., Kato, K.:L-functions and Tamagawa numbers of motives. In: The Grothendieck Festschrift, vol. I. (Prog. Math., vol. 86, pp. 333–400) Boston Basel Berlin: Birkhäuser 1990 · Zbl 0768.14001
[3] Brylinski, J.-L.: Heights for local systems on curves. Duke Math. J.59, 1–26 (1989) · Zbl 0702.14016
[4] Carayol, H.: Sur les représentationsl-adiques attachées aux formes modulaires de Hilbert. Ann. Sci. Éc. Norm. Supér.19, 409–468 (1986) · Zbl 0616.10025
[5] Deligne, P.: Formes modulaires et représentationsl-adiques; Séminaire Bourbaki 1968/69 exp. 355. (Lect. Notes Math., vol. 179, pp. 139–172) Berlin Heidelberg New York: Springer 1971
[6] Faltings, G.: Crystalline cohomology andp-adic Galois representations. In: Proceedings 1st JAMI-conference, pp. 25–79. Baltimore: John Hopkins University Press 1990 · Zbl 0805.14008
[7] Flach, M.: A generalization of the Cassels-Tate pairing. J. Reine Angew. Math.412, 113–127 (1990) · Zbl 0711.14001
[8] Greenberg, R.: Iwasawa Theory forp-adic Representations. In: Algebraic Number Theory (in honor of K. Iwasawa). (Adv. Stud. Pure Math., vol. 17, pp. 97–137) Academic Press 1989 · Zbl 0739.11045
[9] Gross, B.: Kolyvagin’s work on modular elliptic curves. In: Coates, J., Taylor, M.J. (eds.)L-functions and Arithmetic. Proceedings, Durham 1989. (Lond. Math. Soc. Lect. Note Ser., vol. 153, pp. 235–256) Cambridge: Cambridge University Press 1991 · Zbl 0743.14021
[10] Gross, B., Zagier, D.: Heegner points and derivatives ofL-series. Invent. Math.84, 225–320 (1986) · Zbl 0608.14019
[11] Jannsen, U.: Continuous Étale cohomology. Math. Ann.280, 207–245 (1988) · Zbl 0649.14011
[12] Jannsen, U.: Mixed Motives and Algebraic K-Theory. (Lect. Notes Math., vol. 1400) Berlin Heidelberg New York: Springer 1990 · Zbl 0691.14001
[13] Katz, N., Messing, W.: Some consequences of the Riemann hypothesis for varieties over finite fields. Invent. Math.23, 73–77 (1974) · Zbl 0275.14011
[14] Kolyvagin, V.A.: Finiteness ofE(Q) andIII(E,Q) for a subclass of Weil curves. Izv. Akad. Nauk SSSR, Ser. Mat.52, No. 3, 522–540 (1988)
[15] Kolyvagin, V.A.: On Mordell-Weil and Šafarevič-Tate groups for Weil elliptic curves. Izv. Akad. Nauk SSSR, Ser. Mat.52, No. 6, 1154–1180 (1988)
[16] Kolyvagin, V.A.: Euler systems. In: The Grothendieck Festschrift, vol. II. (Prog. Math., vol. 87, pp. 435–483) Boston Basel Berlin: Birkhäuser 1990 · Zbl 0742.14017
[17] Kolyvagin, V.A.: On the structure of Šafarevič-Tate groups. (Preprint 1990)
[18] Milne, J.S.: Étale cohomology. Princeton: Princeton University Press 1980 · Zbl 0433.14012
[19] Momose, F.: On thel-adic representations attached to modular forms. J. Fac. Sci., Univ. Tokyo, Sect. I A,28, 89–109 (1981) · Zbl 0482.10023
[20] Perrin-Riou, B.: Points de Heegner et dérivées de fonctionsL p-adiques. Invent. Math.89, 455–510 (1987) · Zbl 0645.14010
[21] Perrin-Riou, B.: Travaux de Kolyvagin et Rubin. Séminaire Bourbaki exposé 717, 1989/90
[22] Ribet, K.: Galois representations attached to eigenforms with nebentypus, In: (Serre, J.-P., Zagier, D.B. eds.) Modular Functions in one Variable V. (Lect. Notes Math., vol. 601, pp. 17–52) Berlin Heidelberg New York: Springer 1977 · Zbl 0363.10015
[23] Schoen, C.: Complex multiplication cycles on elliptic modular threefolds. Duke Math. J.53, No. 3, 771–794 (1985) · Zbl 0623.14018
[24] Schoen, C.: Complex multiplication cycles and a conjecture of Beilinson and Bloch. (Preprint 1990) · Zbl 0811.14003
[25] Schoen, C.: On the computation of the cycle class map for nullhomologous cycles over the algebraic closure of a finite field. (Preprint 1989) · Zbl 0839.14004
[26] Scholl, A.J.: Motives for modular forms. Invent. Math.100, 419–430 (1990) · Zbl 0760.14002
[27] Serre, J.-P.: Cohomologie Galoisienne. (Lect. Notes Math., vol. 5) Berlin Göttingen Heidelberg New York: Springer 1964
[28] Serre, J.-P.: Local Fields. (Grad. Texts Math., vol. 67) New York Heidelberg Berlin: Springer 1979
[29] Shimura, G.: Introduction to the Arithmetic Theory of Automorphic Functions. Princeton: Princeton University Press: 1971 · Zbl 0221.10029
[30] Tate, J.: Relations betweenK 2 and Galois Cohomology. Invent. Math.36, 257–274 (1976) [SGA 41/2] Deligne, P.: Cohomologie étale. (Lect. Notes Math., vol. 569) Berlin Heidelberg New York: Springer 1977 · Zbl 0359.12011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.