zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Property C and an inverse problem for a hyperbolic equation. (English) Zbl 0729.35147
Summary: Let (*) $u\sb{tt}-\Delta u+q(x,t)u=0$ in $D\times [0,T]$, where $D\subset R\sp 3$ is a bounded domain with a smooth boundary $\partial D$, $T>d$, $d:=diam D$, q(x,t)$\in C([0,T]$, $L\sp{\infty}(D))$. Suppose that for every (**) $u\vert\sb{\partial D}=f(x,t)\in C\sp 1(\partial D\times [0,T])$, the value $u\sb N\vert\sb{\partial D}:=h(s,t)$ is known, where N is the outer normal to $\partial D$, u solves (*) and (**) and satisfies the initial conditions $u=u\sb t=0$ at $t=0$. Then q(x,t) is uniquely determined by the data $\{$ f,h$\}$, $\forall f\in C\sp 1(\partial D\times [0,T])$ in the subset S of $D\times [0,T]$ consisting of the lines which make 45$\circ$ with the t-axis and which meet the planes $t=0$ and $t=T$ outside $\bar D\times [0,T]$, provided that q(x,t) is known outside S.

MSC:
35R30Inverse problems for PDE
35L20Second order hyperbolic equations, boundary value problems
WorldCat.org
Full Text: DOI
References:
[1] Ramm, A. G.: On completeness of the products of harmonic functions. Proc. amer. Math. soc. 99, 253-256 (1986) · Zbl 0602.35015
[2] Ramm, A. G.: Completeness of the products of solutions to PDE and uniqueness theorems in inverse scattering. Inverse problems 3, L77-L82 (1987) · Zbl 0636.35066
[3] Ramm, A. G.: J. math. Anal. appl.. 139, 302 (1989)
[4] Ramm, A. G.: A uniqueness theorem for a boundary inverse problem. Inverse problems 4, L1-L5 (1988) · Zbl 0696.35191
[5] Ramm, A. G.: A uniqueness theorem for two-parameter inversion. Inverse problems 4, L7-L10 (1988) · Zbl 0699.35250
[6] Ramm, A. G.: A simple proof of uniqueness theorem in impedance tomography. Appl. math. Lett. 1, No. N3, 287-290 (1988) · Zbl 0654.35027
[7] Ramm, A. G.: Inverse problems. 5, 255 (1989) · Zbl 0694.35213
[8] Ramm, A. G.: Property C and uniqueness theorems for multidimensional inverse spectral problems. Appl. math. Lett. 3, 57-60 (1990) · Zbl 0711.35147
[9] Ramm, A. G.: Completeness of the products of solutions of PDE and inverse problems. Inverse problems 6, 643-664 (1990) · Zbl 0728.35130
[10] Ramm, A. G.: Multidimensional inverse scattering problems and completeness of the products of solutions to homogeneous PDE. Z. angew. Math. mech. 69, No. N4, T13-T22 (1989) · Zbl 0694.35213
[11] Ramm, A. G.: Stability of the numerical method for solving the 3D inverse scattering problems. Inverse problems 6, L7-L12 (1990) · Zbl 0805.65131
[12] Ramm, A. G.: Numerical recovery of the 3D potential from fixed-energy in complete scattering data. Appl. math. Lett. 2, 101-104 (1989) · Zbl 0705.65087
[13] Ramm, A. G.: Numerical method for solving 3D inverse scattering problems. Appl. math. Lett. 1, 381-384 (1988) · Zbl 0713.35097
[14] Ramm, A. G.: Algorithmically verifiable characterization of the class of scattering amplitudes for small potentials. Appl. math. Lett. 3, 61-65 (1990) · Zbl 0711.35148
[15] A. G. Ramm, Necessary and sufficient condition for a PDE to have property C, J. Math. Anal. Appl., to appear. · Zbl 0742.35019
[16] Buhgeim, A.: Introduction to the theory of inverse problems. (1988)
[17] Klibanov, M.: On a class of inverse problems. Soviet math. Dokl. 26, 248-251 (1982) · Zbl 0546.35072
[18] Rakesh: Reconstruction for an inverse problem for the wave equation. (June 16, 1989) · Zbl 0712.35104
[19] Rakesh; Symes, W.: Uniqueness for an inverse problem for wave equation. Comm. partial differential equations 13, 87-96 (1988) · Zbl 0667.35071
[20] A. G. Ramm and J. Sjöstrand, An inverse problem for the wave equation, Math. Z., to appear. · Zbl 0697.35164
[21] Stefanov, P.: Uniqueness of the multidimensional inverse scattering problem for time dependent potentials. Math. Z. 201, 541-560 (1989) · Zbl 0653.35049
[22] Alessandrini, G.: Stable determination of conductivity by boundary measurements. Appl. anal. 27, 153-172 (1988) · Zbl 0616.35082
[23] Sylvester, J.; Uhlmann, G.: A global uniqueness theorem for an inverse boundary value problem. Ann. of math. 125, 153-169 (1987) · Zbl 0625.35078
[24] Romanov, V.: Integral geometry and inverse problems for hyperbolic equations. (1984) · Zbl 0576.35001
[25] Hörmander, L.: The analysis of linear partial differential operators, III. (1985) · Zbl 0601.35001