×

zbMATH — the first resource for mathematics

On the existence of solutions to a problem in multidimensional segmentation. (English) Zbl 0729.49003
The authors give an existence result for a minimum problem related to image segmentation in computer vision. In the framework of the calculus of variations this minimum problem pertains to the class of “Minimal boundary problems with free discontinuity” recently studied by De Giorgi-Carriero and Leaci. The main result is the following:
Let \(n\geq 2\), M open \(\subset R^ n\), \(0<\lambda <+\infty\), \(1\leq p<+\infty\), \(g\in L^ p(M)\cap L^{\infty}(M)\). Then there exists at least one pair (K,u) minimizing \[ F(K,u)=\lambda \int_{M\setminus K}| u-g|^ p dx+H^{n-1}(K\cap M), \] with k closed \(\subset R^ n\), \(u\in C'(M\setminus K)\) such that \(\nabla u\equiv 0\) in \(M\setminus K\).

MSC:
49J10 Existence theories for free problems in two or more independent variables
49N70 Differential games and control
49N75 Pursuit and evasion games
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] Almgren, F. J., Existence and regularity almost everywhere of solutions to elliptic variations problems with constraints, Mem. A.M.S., Vol. 4, No. 165, (1976) · Zbl 0327.49043
[2] L. Ambrosio, A Compactness Theorem for a Special Class of Functions of Bounded Variation, Boll. Un. Mat. Ital. (to appear). · Zbl 0767.49001
[3] L. Ambrosio, Existence Theory for a New Class of Variational Problems, Arch. Rat. Mech. Anal, (to appear). · Zbl 0711.49064
[4] L. Ambrosio and A. Braides, Functionals defined on partitions… I et II, J. Math. Pures Appl, (to appear). · Zbl 0676.49029
[5] J. Blat and J. M. Morel, Elliptic Problems in Image Segmentation (to appear). · Zbl 0727.35040
[6] Congedo, G.; Tamanini, I., Note sulla regolarità dei minimi di funzionali del tipo dell’area, Rend. Accad. Naz. XL, 106, Vol. XII, fase. 17, 239-257, (1988)
[7] G. Congedo and I. Tamanini, Density Theorems for Local Minimizers of Area-Type Functionals (to appear). · Zbl 0753.49019
[8] E. De Giorgi, Free Discontinuity Problems in Calculus of Variations, Proceedings of the meeting in J. L. Lions’s honour, Paris, 1988 (to appear). · Zbl 0758.49002
[9] E. De Giorgi and L. Ambrosio, Un nuovo tipo di funzionale del calcolo delle variazioni, Atti Accad. Naz. Lincei (to appear).
[10] De Giorgi, E.; Carriero, M.; Leaci, A., Existence theorem for a minimum problem with free discontinuity set, Arch. Rat. Mech. Anal., Vol. 108, 195-218, (1989) · Zbl 0682.49002
[11] De Giorgi, E.; Colombini, F.; Piccinini, L. C., Frontiere orientate di misura minima e questioni collegate, (1972), Editrice Tecnico Scientifica Pisa · Zbl 0296.49031
[12] E. De Giorgi, G. Congedo and I. Tamanini, Problemi di regolarità per un nuovo tipo di funzionale del calcolo delle variazioni, Atti Accad. Naz. Lincei (to appear).
[13] Federer, H., Geometrie measure theory, (1969), Springer-Verlag Berlin · Zbl 0176.00801
[14] Giusti, E., Minimal surfaces and functions of bounded variation, (1984), Birkhäuser Boston · Zbl 0545.49018
[15] Massari, U.; Miranda, M., Minimal surfaces of codimension 1, (1984), North-Holland Amsterdam · Zbl 0565.49030
[16] U. Massari, I. Tamanini, paper in preparation.
[17] Morel, J. M.; Solimini, S., Segmentation of images by variational methods: a constructive approach, Rev. Mat. Univ. Complutense Madrid, Vol. 1, 169-182, (1988) · Zbl 0679.68205
[18] Mumford, D.; Shah, J., Optimal approximations by piecewise smooth functions and associated variational problems, Comm. Pure Appl. Math., Vol. 42, 577-685, (1989) · Zbl 0691.49036
[19] Simon, L., Lectures on geometric measure theory, Vol., 3, (1983), Center for Math. Analysis, Australian National University · Zbl 0546.49019
[20] Taylor, J. E., The structure of singularities in soap-bubble-like and soap-film-like minimal surfaces, Annals Math., 103, 489-539, (1976) · Zbl 0335.49032
[21] Taylor, J. E., Cristalline variational problems, Bull. A.M.S., Vol. 84, 568-588, (1978) · Zbl 0392.49022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.