Implied polynomial matrix equations in multivariable stochastic optimal control. (English) Zbl 0729.93083

Summary: This paper reports recent work in the theoretical development of the polynomial equation approach to the optimization of multivariable control systems. The algebraic properties of the polynomial matrix equations which define the optimal controller are investigated, and new results concerned with the numerical solvability of the equations are derived.


93E20 Optimal stochastic control
93B25 Algebraic methods
93C35 Multivariable systems, multidimensional control systems
Full Text: DOI


[1] Grimble, M. J., Implicit and explicit LQG self-tuning controllers, Automatica, 20, 661-669 (1984) · Zbl 0552.93042
[2] Grimble, M. J., Feedback and feedforward LQG controller design, (Proc. Amer. Control Conf.. Proc. Amer. Control Conf., Seattle (1986)) · Zbl 0850.93286
[3] Grimble, M. J., Two-degrees of freedom feedback and feedforward optimal control of multivariable stochastic systems, Automatica, 24, 809-817 (1988) · Zbl 0665.93061
[4] Hunt, K. J., General polynomial solution to the optimal feedback/feedforward stochastic tracking problem, Int. J. Control, 48, 1057-1073 (1988) · Zbl 0653.93071
[5] Hunt, K. J., (Stochastic Optimal Control Theory with Application in Self-tuning Control (1989), Springer: Springer Berlin) · Zbl 0667.93090
[6] Hunt, K. J.; Grimble, M. J.; Chen, M. J.; Jones, R. W., Industrial LQG self-tuning controller design, (Proc. IEEE Conf. on Decision and Control. Proc. IEEE Conf. on Decision and Control, Athens (1986))
[7] Hunt, K. J.; Grimble, M. J.; Jones, R. W., LQG feedback and feedforward self-tuning control, (Proc. IFAC World Congress. Proc. IFAC World Congress, Munich (1987))
[8] Hunt, K. J.; Šebek, M., Optimal multivariable regulation with disturbance measurement feedforward, Int. J. Control, 49, 373-378 (1989) · Zbl 0678.93001
[9] Hunt, K. J.; Šebek, M., Multivariable LQG self-tuning control with disturbance measurement feedforward, (Proc. IFAC Symp. on Adaptive Systems in Control and Signal Processing. Proc. IFAC Symp. on Adaptive Systems in Control and Signal Processing, Glasgow (1989)) · Zbl 0678.93001
[10] Hunt, K. J.; Šebek, M.; Grimble, M. J., Optimal multivariable LQG control using a single diophantine equation, Int. J. Control, 46, 1445-1453 (1987) · Zbl 0635.93021
[11] Kučera, V., (Discrete Linear Control (1979), Wiley: Wiley Chichester) · Zbl 0422.93103
[12] Kwakernaak, H.; Sivan, R., (Linear Optimal Control Systems (1972), Wiley: Wiley New York) · Zbl 0276.93001
[13] Roberts, A. P.; Newmann, M. M., Polynomial optimization of stochastic feedback control for stable plants, IMA J. Math. Control Inform., 5, 243-257 (1988) · Zbl 0648.93077
[14] Šebek, M., Direct polynomial approach to discrete-time stochastic tracking, Prob. Control Inform. Theory, 12, 293-302 (1983) · Zbl 0517.93067
[15] Šebek, M.; Hunt, K. J.; Grimble, M. J., LQG regulation with disturbance measurement feedforward, Int. J. Control, 47, 1497-1505 (1988) · Zbl 0648.93078
[16] Sternad, M.; Söderström, T., LQG-optimal feedforward regulators, Automatica, 24, 557-561 (1988) · Zbl 0654.93079
[17] Youla, D. C.; Jabr, H. A.; Bongiorno, J. J., Modern Wiener-Hopf design of optimal controllers—Part 2: the multivariable case, IEEE Trans. Aut. Control, AC-21, 319-338 (1976) · Zbl 0339.93035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.