zbMATH — the first resource for mathematics

Risk models for breast cancer and their validation. (English) Zbl 07292493
Summary: Strategies to prevent cancer and diagnose it early when it is most treatable are needed to reduce the public health burden from rising disease incidence. Risk assessment is playing an increasingly important role in targeting individuals in need of such interventions. For breast cancer many individual risk factors have been well understood for a long time, but the development of a fully comprehensive risk model has not been straightforward, in part because there have been limited data where joint effects of an extensive set of risk factors may be estimated with precision. In this article we first review the approach taken to develop the IBIS (Tyrer-Cuzick) model, and describe recent updates. We then review and develop methods to assess calibration of models such as this one, where the risk of disease allowing for competing mortality over a long follow-up time or lifetime is estimated. The breast cancer risk model model and calibration assessment methods are demonstrated using a cohort of \(132,139\) women attending mammography screening in the State of Washington, USA.
62 Statistics
aplore3; BOADICEA; gamair
Full Text: DOI Euclid
[1] Altman, D. G., McShane, L. M., Sauerbrei, W. and Taube, S. E. (2012). Reporting recommendations for tumor marker prognostic studies (REMARK): Explanation and elaboration. PLoS Med. 9 e \(1001216+\). https://doi.org/10.1371/journal.pmed.1001216.
[2] Amir, E., Evans, D. G., Shenton, A., Lalloo, F., Moran, A., Boggis, C., Wilson, M. and Howell, A. (2003). Evaluation of breast cancer risk assessment packages in the family history evaluation and screening programme. J. Med. Genet. 40 807-814. https://doi.org/10.1136/jmg.40.11.807.
[3] Anderson, H., Bladstrom, A., Olsson, H. and Moller, T. R. (2000). Familial breast and ovarian cancer: A Swedish population-based register study. Am. J. Epidemiol. 152 1154-1163. https://doi.org/10.1093/aje/152.12.1154.
[4] Antoniou, A. C., Cunningham, A. P., Peto, J., Evans, D. G., Lalloo, F., Narod, S. A., Risch, H. A., Eyfjord, J. E., Hopper, J. L. et al. (2008). The BOADICEA model of genetic susceptibility to breast and ovarian cancers: Updates and extensions. Br. J. Cancer 98 1457-1466. https://doi.org/10.1038/sj.bjc.6604305.
[5] Antoniou, A. C., Pharoah, P. D. P., McMullan, G., Day, N. E., Stratton, M. R., Peto, J., Ponder, B. J. and Easton, D. F. (2002). A comprehensive model for familial breast cancer incorporating BRCA1, BRCA2 and other genes. Br. J. Cancer 86 76-83.
[6] Arjas, E. (1988). A graphical method for assessing goodness of fit in Cox’s proportional hazards model. J. Amer. Statist. Assoc. 83 204-212.
[7] Banegas, M., Gail, M., LaCroix, A., Thompson, B., Martinez, M., Wactawski-Wende, J., John, E., Hubbell, Yasmeen, S. et al. (2012). Evaluating breast cancer risk projections for hispanic women. Breast Cancer Res. Treat. 132 347-353. https://doi.org/10.1007/s10549-011-1900-9.
[8] Banegas, M. P., John, E. M., Slattery, M. L., Gomez, S. L., Yu, M., LaCroix, A. Z., Pee, D., Chlebowski, R. T., Hines, L. M. et al. (2017). Projecting individualized absolute invasive breast cancer risk in US hispanic women. J. Natl. Cancer Inst. 109 djw215. https://doi.org/10.1093/jnci/djw215.
[9] Boughey, J. C., Hartmann, L. C., Anderson, S. S., Degnim, A. C., Vierkant, R. A., Reynolds, C. A., Frost, M. H. and Pankratz, V. S. (2010). Evaluation of the Tyrer-Cuzick (international breast cancer intervention study) model for breast cancer risk prediction in women with atypical hyperplasia. J. Clin. Oncol. 28 3591-3596. https://doi.org/10.1200/JCO.2010.28.0784.
[10] Boyd, N. F., Guo, H., Martin, L. J., Sun, L., Stone, J., Fishell, E., Jong, R. A., Hislop, G., Chiarelli, A. et al. (2007). Mammographic density and the risk and detection of breast cancer. N. Engl. J. Med. 356 227-236. https://doi.org/10.1056/nejmoa062790.
[11] Boyd, N. F., O’Sullivan, B., Campbell, J. E., Fishell, E., Simor, I., Cooke, G. and Germanson, T. (1982). Mammographic signs as risk factors for breast cancer. Br. J. Cancer 45 185-193.
[12] Brentnall, A. R., Cohn, W. F., Knaus, W. A., Yaffe, M. J., Cuzick, J. and Harvey, J. A. (2019). A case-control study to add volumetric or clinical mammographic density into the Tyrer-Cuzick breast cancer risk model. J. Breast Imaging 1 99-106. https://doi.org/10.1093/jbi/wbz006.
[13] Brentnall, A. R. and Cuzick, J. (2020). Supplement to “Risk models for breast cancer and their validation.” https://doi.org/10.1214/19-STS729SUPP.
[14] Brentnall, A. R., Cuzick, J., Buist, D. S. M. and Bowles, E. J. A. (2018). Long-term Accuracy of Breast Cancer Risk Assessment Combining Classic Risk Factors and Breast Density. JAMA Oncology 4 e180174. https://doi.org/10.1001/jamaoncol.2018.0174.
[15] Brentnall, A. R., Harkness, E. F., Astley, S. M., Donnelly, L. S., Stavrinos, P., Sampson, S., Fox, L., Sergeant, J. C., Harvie, M. N. et al. (2015). Mammographic density adds accuracy to both the Tyrer-Cuzick and Gail breast cancer risk models in a prospective UK screening cohort. Breast Cancer Res. \(17 147+\). https://doi.org/10.1186/s13058-015-0653-5.
[16] Chen, J., Pee, D., Ayyagari, R., Graubard, B., Schairer, C., Byrne, C., Benichou, J. and Gail, M. H. (2006). Projecting absolute invasive breast cancer risk in white women with a model that includes mammographic density. J. Natl. Cancer Inst. 98 1215-1226.
[17] Chlebowski, R. T. and Anderson, G. L. (2011). The influence of time from menopause and mammography on hormone therapy-related breast cancer risk assessment. J. Natl. Cancer Inst. 103 284-285. https://doi.org/10.1093/jnci/djq561.
[18] Claus, E. B., Risch, N., Thompson, W. D., Claus, E. B., Risch, N. and Thompson, W. D. (1993). The calculation of breast cancer risk for women with a first degree family history of ovarian cancer. Breast Cancer Res. Treat. 28 115-120. https://doi.org/10.1007/bf00666424.
[19] Costantino, J. P., Gail, M. H., Pee, D., Anderson, S., Redmond, C. K., Benichou, J. and Wieand, H. S. (1999). Validation studies for models projecting the risk of invasive and total breast cancer incidence. J. Natl. Cancer Inst. 91 1541-1548.
[20] Crowder, M. J. (2001). Classical Competing Risks, 1st ed. CRC Press/CRC, Boca Raton, FL. · Zbl 0979.62078
[21] Crowson, C. S., Atkinson, E. J. and Therneau, T. M. (2016). Assessing calibration of prognostic risk scores. Stat. Methods Med. Res. 25 1692-1706.
[22] Cuzick, J., Brentnall, A. R., Segal, C., Byers, H., Reuter, C., Detre, S., Lopez-Knowles, E., Sestak, I., Howell, A. et al. (2017). Impact of a panel of 88 single nucleotide polymorphisms on the risk of breast cancer in high-risk women: Results from two randomized tamoxifen prevention trials. J. Clin. Oncol. 35 743-750. https://doi.org/10.1200/JCO.2016.69.8944.
[23] Cuzick, J., Sestak, I., Cawthorn, S., Hamed, H., Holli, K., Howell, A. and Forbes, J. F. (2015). Tamoxifen for prevention of breast cancer: Extended long-term follow-up of the IBIS-I breast cancer prevention trial. Lancet Oncol. 16 67-75. https://doi.org/10.1016/s1470-2045(14)71171-4.
[24] Decarli, A., Calza, S., Masala, G., Specchia, C., Palli, D. and Gail, M. H. (2006). Gail model for prediction of absolute risk of invasive breast cancer: Independent evaluation in the Florence-European prospective investigation into cancer and nutrition cohort. J. Natl. Cancer Inst. 98 1686-1693. https://doi.org/10.1093/jnci/djj463.
[25] Degnim, A. C., Visscher, D. W., Berman, H. K., Frost, M. H., Sellers, T. A., Vierkant, R. A., Maloney, S. D., Pankratz, V. S., de Groen, P. C. et al. (2007). Stratification of breast cancer risk in women with atypia: A mayo cohort study. J. Clin. Oncol. 25 2671-2677. https://doi.org/10.1200/JCO.2006.09.0217.
[26] De Stavola, B. (1987). Statistical facts about cancers on which doctor Rigoni-Stern based his contribution to the surgeons’ subgroup of the IV Congress of the Italian scientists on 23 September 1842. Stat. Med. 6 881-884. https://doi.org/10.1002/sim.4780060803.
[27] Dupont, W. D., Degnim, A. C., Sanders, M. E., Simpson, J. F. and Hartmann, L. C. (2018). Risk Factors for Breast Carcinoma in Women With Proliferative Breast Disease. In The Breast 264-271.e2. Elsevier, Amsterdam. https://doi.org/10.1016/b978-0-323-35955-9.00020-9.
[28] Easton, D. F., Pharoah, P. D., Antoniou, A. C., Tischkowitz, M., Tavtigian, S. V., Nathanson, K. L., Devilee, P., Meindl, A., Couch, F. J. et al. (2015). Gene-panel sequencing and the prediction of breast-cancer risk. N. Engl. J. Med. 372 2243-2257.
[29] Easton, D. F., Pharoah, P. D. P., Antoniou, A. C., Tischkowitz, M., Tavtigian, S. V., Nathanson, K. L., Devilee, P., Meindl, A., Couch, F. J. et al. (2015). Gene-panel sequencing and the prediction of breast-cancer risk. N. Engl. J. Med. 372 2243-2257. https://doi.org/10.1056/NEJMsr1501341.
[30] Evans, D. G., Brentnall, A., Byers, H., Harkness, E., Stavrinos, P., Howell, A., Newman, W. G. and Cuzick, J. (2017). The impact of a panel of 18 SNPs on breast cancer risk in women attending a UK familial screening clinic: A case-control study. J. Med. Genet. 54 111-113. https://doi.org/10.1136/jmedgenet-2016-104125.
[31] Ford, D., Easton, D. F., Stratton, M., Narod, S., Goldgar, D., Devilee, P., Bishop, D. T., Weber, B., Lenoir, G. et al. (1998). Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. Am. J. Hum. Genet. 62 676-689.
[32] Gail, M. H., Brinton, L. A., Byar, D. P., Corle, D. K., Green, S. B., Schairer, C. and Mulvihill, J. J. (1989). Projecting individualized probabilities of developing breast cancer for white females who are being examined annually. J. Natl. Cancer Inst. 81 1879-1886. https://doi.org/10.1093/jnci/81.24.1879.
[33] Gail, M. H. and Pfeiffer, R. M. (2005). On criteria for evaluating models of absolute risk. Biostatistics 6 227-239. https://doi.org/10.1093/biostatistics/kxi005. · Zbl 1071.62100
[34] Grønnesby, J. K. and Borgan, Ø. (1996). A method for checking regression models in survival analysis based on the risk score. Lifetime Data Anal. 2 315-328. https://doi.org/10.1007/BF00127305. · Zbl 0884.62116
[35] Collaborative group on hormonal factors in breast cancer (2002). Alcohol, tobacco and breast cancer—collaborative reanalysis of individual data from 53 epidemiological studies, including 58 515 women with breast cancer and 95 067 women without the disease. Br. J. Cancer 87 1234-1245. https://doi.org/10.1038/sj.bjc.6600596.
[36] Harrell, F. E., Lee, K. L. and Mark, D. B. Multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat. Med. 15 361-387. https://doi.org/10.1002/(SICI)1097-0258(19960229)15:4%3C361::AID-SIM168%3E3.0.CO;2-4.
[37] Hidayat, K., Yang, C. M. and Shi, B. M. (2018). Body fatness at a young age, body fatness gain and risk of breast cancer: Systematic review and meta-analysis of cohort studies. Obes. Rev. 19 254-268. https://doi.org/10.1111/obr.12627.
[38] Hosmer, D. W., Lemeshow, S. and Sturdivant, R. X. (2013). Applied Logistic Regression. Wiley, Hoboken, NJ, USA. https://doi.org/10.1002/9781118548387. · Zbl 1276.62050
[39] John, E. M. (2005). Migration history, acculturation, and breast cancer risk in hispanic women. Cancer Epidemiol. Biomark. Prev. 14 2905-2913. https://doi.org/10.1158/1055-9965.EPI-05-0483.
[40] Keiding, N. (1987). The method of expected number of deaths, 1786-1886-1986. Int. Stat. Rev. 55 1-20. · Zbl 0616.62001
[41] Lawless, J. F. (2003). Statistical Models and Methods for Lifetime Data, 2nd ed. Wiley Series in Probability and Statistics. Wiley-Interscience, Hoboken, NJ. · Zbl 1015.62093
[42] Lee, A. J., Cunningham, A. P., Tischkowitz, M., Simard, J., Pharoah, P. D., Easton, D. F. and Antoniou, A. C. (2016). Incorporating truncating variants in PALB2, CHEK2, and ATM into the BOADICEA breast cancer risk model. Genet. Med. 18 1190-1198. https://doi.org/10.1038/gim.2016.31.
[43] Macmahon, B. and Cole, P. (1969). Endocrinology and epidemiology of breast cancer. Cancer 24 1146-1150. https://doi.org/10.1002/1097-0142(196912)24:6%3C1146::aid-cncr2820240612%3E3.0.co;2-0.
[44] Mavaddat, N., Michailidou, K., Dennis, J., Lush, M., Fachal, L., Lee, A., Tyrer, J. P., Chen, T.-H., Wang, Q. et al. (2019). Polygenic risk scores for prediction of breast cancer and breast cancer subtypes. Am. J. Hum. Genet. 104 21-34. https://doi.org/10.1016/j.ajhg.2018.11.002.
[45] McCormack, V. A. and dos Santos Silva, I. (2006). Breast density and parenchymal patterns as markers of breast cancer risk: A meta-analysis. Cancer Epidemiol. Biomark. Prev. 15 1159-1169. https://doi.org/10.1158/1055-9965.epi-06-0034.
[46] Mealiffe, M. E., Stokowski, R. P., Rhees, B. K., Prentice, R. L., Pettinger, M. and Hinds, D. A. (2010). Assessment of clinical validity of a breast cancer risk model combining genetic and clinical information. J. Natl. Cancer Inst. 102 1618-1627. https://doi.org/10.1093/jnci/djq388.
[47] Collaborative Group on Hormonal Factors in Breast Cancer (2012). Menarche, menopause, and breast cancer risk: Individual participant meta-analysis, including 118-964 women with breast cancer from 117 epidemiological studies. Lancet Oncol. 13 1141-1151. https://doi.org/10.1016/s1470-2045(12)70425-4.
[48] Parmigiani, G., Berry, D. A. and Aguilar, O. (1998). Determining carrier probabilities for breast cancer-susceptibility genes BRCA1 and BRCA2. Am. J. Hum. Genet. 62 145-158. https://doi.org/10.1086/301670.
[49] Pike, M. C., Krailo, M. D., Henderson, B. E., Casagrande, J. T. and Hoel, D. G. (1983). ‘Hormonal’ risk factors, ‘breast tissue age’ and the age-incidence of breast cancer. Nature 303 767-770.
[50] Prentice, R. L., Caan, B., Chlebowski, R. T., Patterson, R., Kuller, L. H., Ockene, J. K., Margolis, K. L., Limacher, M. C., Manson, J. E. et al. (2006). Low-fat dietary pattern and risk of invasive breast cancer. JAMA 295 629. https://doi.org/10.1001/jama.295.6.629.
[51] Reeves, G. K., Beral, V., Green, J., Gathani, T. and Bull, D. (2006). Hormonal therapy for menopause and breast-cancer risk by histological type: A cohort study and meta-analysis. Lancet Oncol. 7 910-918. https://doi.org/10.1016/S1470-2045(06)70911-1.
[52] Rice, M. S., Tworoger, S. S., Hankinson, S. E., Tamimi, R. M., Eliassen, A. H., Willett, W. C., Colditz, G. and Rosner, B. (2017). Breast cancer risk prediction: An update to the Rosner-Colditz breast cancer incidence model. Breast Cancer Res. Treat. 166 227-240. https://doi.org/10.1007/s10549-017-4391-5.
[53] Rigoni-Stern (1842). Fatti statistici relativi alle malattie cancerose. Giorn. Prog. Patol. Terap. 2 507-517.
[54] Rockhill, B., Spiegelman, D., Byrne, C., Hunter, D. J. and Colditz, G. A. (2001). Validation of the Gail et al. Model of breast cancer risk prediction and implications for chemoprevention. J. Natl. Cancer Inst. 93 358-366. https://doi.org/10.1093/jnci/93.5.358.
[55] Rosner, B. A., Colditz, G. A., Hankinson, S. E., Sullivan-Halley, J., Lacey, J. V. and Bernstein, L. (2013). Validation of Rosner-Colditz breast cancer incidence model using an independent data set, the California Teachers Study. Breast Cancer Res. Treat. 142 187-202. https://doi.org/10.1007/s10549-013-2719-3.
[56] Sasieni, P. and Brentnall, A. R. (2017). On standardized relative survival. Biometrics 73 473-482. · Zbl 1372.62085
[57] Saslow, D., Boetes, C., Burke, W., Harms, S., Leach, M. O., Lehman, C. D., Morris, E., Pisano, E., Schnall, M. et al. (2007). American cancer society guidelines for breast screening with MRI as an adjunct to mammography. CA Cancer J. Clin. 57 75-89. https://doi.org/10.3322/canjclin.57.2.75.
[58] Schoemaker, M. J., Nichols, H. B., Wright, L. B., Brook, M. N., Jones, M. E., O’Brien, K. M., Adami, H.-O., Baglietto, L., Bernstein, L. et al. (2018). Association of body mass index and age with subsequent breast cancer risk in premenopausal women. JAMA Oncol. 4 e181771. https://doi.org/10.1001/jamaoncol.2018.1771.
[59] Steel, M., Thompson, A. and Clayton, J. (1991). Genetic aspects of breast cancer. Br. Med. Bull. 47 504-518.
[60] Teams, F. C. (2010). Mammographic surveillance in women younger than 50 years who have a family history of breast cancer: Tumour characteristics and projected effect on mortality in the prospective, single-arm, FH01 study. Lancet Oncol. 11 1127-1134. https://doi.org/10.1016/s1470-2045(10)70263-1.
[61] Tice, J. A., Cummings, S. R., Smith-Bindman, R., Ichikawa, L., Barlow, W. E. and Kerlikowske, K. (2008). Using clinical factors and mammographic breast density to estimate breast cancer risk: Development and validation of a new predictive model. Ann. Intern. Med. 148 337-347.
[62] Tice, J. A., Miglioretti, D. L., Li, C.-S., Vachon, C. M., Gard, C. C. and Kerlikowske, K. (2015). Breast density and benign breast disease: Risk assessment to identify women at high risk of breast cancer. J. Clin. Oncol. 33 JCO.2015.60.8869-3143. https://doi.org/10.1200/jco.2015.60.8869.
[63] Tyrer, J., Duffy, S. W. and Cuzick, J. (2004). A breast cancer prediction model incorporating familial and personal risk factors. Stat. Med. 23 1111-1130. https://doi.org/10.1002/sim.1668.
[64] Vachon, C. M., Pankratz, V. S., Scott, C. G., Haeberle, L., Ziv, E., Jensen, M. R., Brandt, K. R., Whaley, D. H., Olson, J. E. et al. (2015). The Contributions of Breast Density and Common Genetic Variation to Breast Cancer Risk. J Natl Cancer Inst 107 dju \(397+\). https://doi.org/10.1093/jnci/dju397.
[65] van Veen, E. M., Brentnall, A. R., Byers, H., Harkness, E. F., Astley, S. M., Sampson, S., Howell, A., Newman, W. G., Cuzick, J. et al. (2018). Use of single-nucleotide polymorphisms and mammographic density plus classic risk factors for breast cancer risk prediction. JAMA Oncol. 4 476. https://doi.org/10.1001/jamaoncol.2017.4881.
[66] Wacholder, S., Hartge, P., Prentice, R., Garcia-Closas, M., Feigelson, H. S., Diver, W. R., Thun, M. J., Cox, D. G., Hankinson, S. E. et al. (2010). Performance of common genetic variants in breast-cancer risk models. N. Engl. J. Med. 362 986-993. https://doi.org/10.1056/nejmoa0907727.
[67] Wang, C., Brentnall, A. R., Cuzick, J., Harkness, E. F., Evans, D. G. and Astley, S. (2017). A novel and fully automated mammographic texture analysis for risk prediction: Results from two case-control studies. Breast Cancer Res. 19 114. https://doi.org/10.1186/s13058-017-0906-6.
[68] Warwick, J., Birke, H., Stone, J., Warren, R. M. L., Pinney, E., Brentnall, A. R., Duffy, S. W., Howell, A. and Cuzick, J. (2014). Mammographic breast density refines Tyrer-Cuzick estimates of breast cancer risk in high-risk women: findings from the placebo arm of the International Breast Cancer Intervention Study I. Breast Cancer Research \(16 451+\). https://doi.org/10.1186/s13058-014-0451-5.
[69] Wolfe, J. N. (1976). Breast patterns as an index of risk for developing breast cancer. Am. J. Roentgenol. 126 1130-1137.
[70] Wood, S. N. (2006). Generalized Additive Models: An Introduction with R. Texts in Statistical Science Series. CRC Press/CRC, Boca Raton, FL.
[71] Wu, Y., Zhang, D. and Kang, S. (2013). Physical activity and risk of breast cancer: A meta-analysis of prospective studies. Breast Cancer Res. Treat. 137 869-882. https://doi.org/10.1007/s10549-012-2396-7.
[72] Zhang, X.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.