×

zbMATH — the first resource for mathematics

Comment: Matching methods for observational studies derived from large administrative databases. (English) Zbl 07292519
MSC:
62 Statistics
Software:
DiPs; finebalance
PDF BibTeX XML Cite
Full Text: DOI Euclid
References:
[1] Bertsekas, D. (1998). Network Optimization: Continuous and Discrete Models. Athena Scientific, Belmont, MA. · Zbl 0997.90505
[2] Cohen, N. and Brassil, J. (2000). A parallel pruning technique for highly asymmetric assignment problems. IEEE Trans. Parallel Distrib. Syst. 11 550-558.
[3] Colannino, J., Damian, M., Hurtado, F., Iacono, J., Meijer, H., Ramaswami, S. and Toussaint, G. (2006). An \(O(n\log n)\)-time algorithm for the restriction scaffold assignment problem. J. Comput. Biol. 13 979-989.
[4] Colannino, J., Damian, M., Hurtado, F., Langerman, S., Meijer, H., Ramaswami, S., Souvaine, D. and Toussaint, G. (2007). Efficient many-to-many point matching in one dimension. Graphs Combin. 23 169-178. · Zbl 1149.90092
[5] Crump, R. K., Hotz, V. J., Imbens, G. W. and Mitnik, O. A. (2009). Dealing with limited overlap in estimation of average treatment effects. Biometrika 96 187-199. · Zbl 1163.62083
[6] Fogarty, C. B., Mikkelsen, M. E., Gaieski, D. F. and Small, D. S. (2016). Discrete optimization for interpretable study populations and randomization inference in an observational study of severe sepsis mortality. J. Amer. Statist. Assoc. 111 447-458.
[7] Gu, X. S. and Rosenbaum, P. R. (1993). Comparison of multivariate matching methods: Structures, distances, and algorithms. J. Comput. Graph. Statist. 2 405-420.
[8] Gurm, H. S., Hosman, C., Share, D., Moscucci, M. and Hansen, B. B. (2013). Comparative safety of vascular closure devices and manual closure among patients having percutaneous coronary intervention. Ann. Intern. Med. 159 660-666.
[9] Hansen, B. B. (2004). Full matching in an observational study of coaching for the SAT. J. Amer. Statist. Assoc. 99 609-618. · Zbl 1117.62349
[10] Hansen, B. B. (2011). Propensity score matching to extract latent experiments from nonexperimental data: A case study. In Looking Back: Proceedings of a Conference in Honor of Paul W. Holland (N. Dorans and S. Sinharay, eds.) 149-181 9. Springer.
[11] Hansen, B. B. and Bowers, J. (2008). Covariate balance in simple, stratified and clustered comparative studies. Statist. Sci. 23 219-236. · Zbl 1327.62019
[12] Hansen, B. B. and Klopfer, S. O. (2006). Optimal full matching and related designs via network flows. J. Comput. Graph. Statist. 15 609-627.
[13] Hill, J. and Su, Y.-S. (2013). Assessing lack of common support in causal inference using Bayesian nonparametrics: Implications for evaluating the effect of breastfeeding on children’s cognitive outcomes. Ann. Appl. Stat. 7 1386-1420. · Zbl 1283.62220
[14] Imbens, G. W. and Rubin, D. B. (2015). Causal Inference—for Statistics, Social, and Biomedical Sciences: An Introduction. Cambridge Univ. Press, New York. · Zbl 1355.62002
[15] Kalton, G. (1968). Standardization: A technique to control for extraneous variables. Appl. Statist. 17 118-136.
[16] Karp, R. M. and Li, S.-Y. R. (1975). Two special cases of the assignment problem. Discrete Math. 13 129-142. · Zbl 0311.90066
[17] Kilcioglu, C. and Zubizarreta, J. R. (2016). Maximizing the information content of a balanced matched sample in a study of the economic performance of green buildings. Ann. Appl. Stat. 10 1997-2020. · Zbl 1454.62484
[18] Mohamad, M., Rappaport, D. and Toussaint, G. (2015). Minimum many-to-many matchings for computing the distance between two sequences. Graphs Combin. 31 1637-1648. · Zbl 1321.05210
[19] Pimentel, S. D., Yoon, F. and Keele, L. (2015). Variable-ratio matching with fine balance in a study of the Peer Health Exchange. Stat. Med. 34 4070-4082.
[20] Pimentel, S. D., Kelz, R. R., Silber, J. H. and Rosenbaum, P. R. (2015). Large, sparse optimal matching with refined covariate balance in an observational study of the health outcomes produced by new surgeons. J. Amer. Statist. Assoc. 110 515-527.
[21] Pimentel, S. D., Page, L. C., Lenard, M. and Keele, L. (2018). Optimal multilevel matching using network flows: An application to a summer reading intervention. Ann. Appl. Stat. 12 1479-1505. · Zbl 1405.62242
[22] Rajabi-Alni, F. and Bagheri, A. (2016). An \(O(n^2)\) algorithm for the limited-capacity many-to-many point matching in one dimension. Algorithmica 76 381-400. · Zbl 1350.68276
[23] Rosenbaum, P. R. (1989). Optimal matching for observational studies. J. Amer. Statist. Assoc. 84 1024-1032.
[24] Rosenbaum, P. R. (1991). A characterization of optimal designs for observational studies. J. Roy. Statist. Soc. Ser. B 53 597-610. · Zbl 0800.62465
[25] Rosenbaum, P. R. (2002). Observational Studies, 2nd ed. Springer Series in Statistics. Springer, New York. · Zbl 0985.62091
[26] Rosenbaum, P. R. (2017). Imposing minimax and quantile constraints on optimal matching in observational studies. J. Comput. Graph. Statist. 26 66-78.
[27] Rosenbaum, P. R. and Rubin, D. B. (1985). Constructing a control group using multivariate matched sampling methods that incorporate the propensity score. Amer. Statist. 39 33-38.
[28] Ruzankin, P. S. (2019). A fast algorithm for maximal propensity score matching. Methodol. Comput. Appl. Probab. · Zbl 1448.92010
[29] Sävje, F., Higgins, M. J. and Sekhon, J. S. (2017). Generalized full matching. arXiv e-prints, arXiv:1703.03882.
[30] Traskin, M. and Small, D. S. (2011). Defining the study population for an observational study to ensure sufficient overlap: A tree approach. Stat. Biosci. 3 94-118.
[31] Vasconcelos, C. and Rosenhahn, B. (2009). Bipartite graph matching computation on GPU. In Energy Minimization Methods in Computer Vision and Pattern Recognition (D. Cremers, Y. Boykov, A. Blake and F. R. Schmidt, eds.). Lecture Notes in Computer Science 5681 42-55. Springer, Berlin Heidelberg.
[32] Yang, D., Small, D. S., Silber, J. H. and Rosenbaum, P. R. (2012). Optimal matching with minimal deviation from fine balance in a study of obesity and surgical outcomes. Biometrics 68 628-636. · Zbl 1274.62910
[33] Yu, R. and Rosenbaum, P. R. (2019). Directional penalties for optimal matching in observational studies. Biometrics 75 1380-1390.
[34] Zubizarreta, J. · Zbl 1258.62119
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.