×

zbMATH — the first resource for mathematics

Rejoinder: Matching methods for observational studies derived from large administrative databases. (English) Zbl 07292521
MSC:
62 Statistics
PDF BibTeX XML Cite
Full Text: DOI Euclid
References:
[1] Bertsekas, D. P. (1998). Network Optimization. Athena Scientific, Belmont, MA. · Zbl 0997.90505
[2] Fogarty, C. B., Mikkelsen, M. E., Gaieski, D. F. and Small, D. S. (2016). Discrete optimization for interpretable study populations and randomization inference in an observational study of severe sepsis mortality. J. Amer. Statist. Assoc. 111 447-458.
[3] Garfinkel, R. S. (1971). An improved algorithm for the bottleneck assignment problem. Oper. Res. 19 1747-1751. · Zbl 0225.90028
[4] Glover, F. (1967). Maximum matching in a convex bipartite graph. Nav. Res. Logist. Q. 14 313-316. · Zbl 0183.24501
[5] Heller, R., Rosenbaum, P. R. and Small, D. S. (2009). Split samples and design sensitivity in observational studies. J. Amer. Statist. Assoc. 104 1090-1101. · Zbl 1388.62231
[6] Hsu, J. Y., Zubizarreta, J. R., Small, D. S. and Rosenbaum, P. R. (2015). Strong control of the familywise error rate in observational studies that discover effect modification by exploratory methods. Biometrika 102 767-782. · Zbl 1419.62142
[7] Karmakar, B., Small, D. S. and Rosenbaum, P. R. (2019). Using approximation algorithms to build evidence factors and related designs for observational studies. J. Comput. Graph. Statist. 28 698-709.
[8] Korte, B. and Vygen, J. (2012). Combinatorial Optimization: Theory and Algorithms, 5th ed. Algorithms and Combinatorics 21. Springer, Heidelberg. · Zbl 1237.90001
[9] Lee, K., Small, D. S. and Rosenbaum, P. R. (2018). A powerful approach to the study of moderate effect modification in observational studies. Biometrics 74 1161-1170.
[10] Pimentel, S. D. and Kelz, R. R. (2020). Optimal tradeoffs in matched designs comparing US-trained and internationally trained surgeons. J. Amer. Statist. Assoc.
[11] Pimentel, S. D., Yoon, F. and Keele, L. (2015). Variable-ratio matching with fine balance in a study of the Peer Health Exchange. Stat. Med. 34 4070-4082.
[12] Rosenbaum, P. R. (2005). Heterogeneity and causality: Unit heterogeneity and design sensitivity in observational studies. Amer. Statist. 59 147-152.
[13] Rosenbaum, P. R. (2012). Optimal matching of an optimally chosen subset in observational studies. J. Comput. Graph. Statist. 21 57-71.
[14] Rosenbaum, P. R. (2017). Imposing minimax and quantile constraints on optimal matching in observational studies. J. Comput. Graph. Statist. 26 66-78.
[15] Rubin, D. B. (2007). The design versus the analysis of observational studies for causal effects: Parallels with the design of randomized trials. Stat. Med. 26 20-36.
[16] Tukey, J. W. (1980). We need both exploratory and confirmatory. Amer. Statist. 34 23-25.
[17] Yu, R. and Rosenbaum, P. R. (2019). Directional penalties for optimal matching in observational studies. Biometrics 75 1380-1390.
[18] Zhang, K., Small, D. S., Lorch, S., Srinivas, S. and Rosenbaum, P. R. (2011). Using split samples and evidence factors in an observational study of neonatal outcomes. J. Amer. Statist. Assoc. 106 511-524. · Zbl 1232.62156
[19] Zubizarreta, J. R. (2012). Using mixed integer programming for matching in an observational study of kidney failure after surgery. J. Amer. Statist. Assoc. 107 1360-1371. · Zbl 1258.62119
[20] Zubizarreta, J. · Zbl 1454.62510
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.