Energy stability of explicit Runge-Kutta methods for nonautonomous or nonlinear problems. (English) Zbl 1457.65032


65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
65L20 Stability and convergence of numerical methods for ordinary differential equations
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M20 Method of lines for initial value and initial-boundary value problems involving PDEs
Full Text: DOI arXiv


[1] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, Julia: A fresh approach to numerical computing, SIAM Rev., 59 (2017), pp. 65-98, https://doi.org/10.1137/141000671. · Zbl 1356.68030
[2] P. D. Boom and D. W. Zingg, High-order implicit time-marching methods based on generalized summation-by-parts operators, SIAM J. Sci. Comput., 37 (2015), pp. A2682-A2709, https://doi.org/10.1137/15M1014917. · Zbl 1359.65127
[3] K. Burrage and J. C. Butcher, Stability criteria for implicit Runge-Kutta methods, SIAM J. Numer. Anal., 16 (1979), pp. 46-57, https://doi.org/10.1137/0716004. · Zbl 0396.65043
[4] J. C. Butcher, Numerical Methods for Ordinary Differential Equations, John Wiley & Sons Ltd., Chichester, 2016. · Zbl 1354.65004
[5] M. Calvo, D. Hernández-Abreu, J. I. Montijano, and L. Rández, On the preservation of invariants by explicit Runge-Kutta methods, SIAM J. Sci. Comput., 28 (2006), pp. 868-885, https://doi.org/10.1137/04061979X. · Zbl 1118.65085
[6] M. Calvo, M. Laburta, J. Montijano, and L. Rández, Projection methods preserving Lyapunov functions, BIT Numer. Math., 50 (2010), pp. 223-241, https://doi.org/10.1007/s10543-010-0259-3. · Zbl 1194.65090
[7] M. Crouzeix, Sur la b-stabilité des méthodes de Runge-Kutta, Numer. Math., 32 (1979), pp. 75-82, https://doi.org/10.1007/BF01397651. · Zbl 0431.65052
[8] G. Dahlquist and R. Jeltsch, Generalized Disks of Contractivity for Explicit and Implicit Runge-Kutta Methods, Technical Report TRITA-NA-7906, Institut för Numerisk Analysis, KTH Stockholm, Departement of Numerical Analysis and Computing Sciences, The Royal Institute of Technology, S-100 44 Stockholm 70, Sweden, 01 1979.
[9] D. C. D. R. Fernández, J. E. Hicken, and D. W. Zingg, Review of summation-by-parts operators with simultaneous approximation terms for the numerical solution of partial differential equations, Comput. Fluids, 95 (2014), pp. 171-196, https://doi.org/10.1016/j.compfluid.2014.02.016. · Zbl 1390.65064
[10] L. Friedrich, G. Schnücke, A. R. Winters, D. C. D. R. Fernández, G. J. Gassner, and M. H. Carpenter, Entropy stable space-time discontinuous Galerkin schemes with summation-by-parts property for hyperbolic conservation laws, J. Sci. Comput., 80 (2019), pp. 175-222, https://doi.org/10.1007/s10915-019-00933-2. · Zbl 1421.35262
[11] G. J. Gassner, A skew-symmetric discontinuous Galerkin spectral element discretization and its relation to SBP-SAT finite difference methods, SIAM J. Sci. Comput., 35 (2013), pp. A1233-A1253, https://doi.org/10.1137/120890144.
[12] J. Glaubitz, P. Öffner, H. Ranocha, and T. Sonar, Artificial viscosity for correction procedure via reconstruction using summation-by-parts operators, in Theory, Numerics and Applications of Hyperbolic Problems II, C. Klingenberg and M. Westdickenberg, eds., Springer Proceedings in Mathematics & Statistics 237, Springer, Cham, 2018, pp. 363-375, https://doi.org/10.1007/978-3-319-91548-7_28. · Zbl 1412.65117
[13] B. Gustafsson, High Order Difference Methods for Time Dependent PDE, Springer Series in Computational Mathematics 38, Springer Science & Business Media, Berlin Heidelberg, 2007, https://doi.org/10.1007/978-3-540-74993-6. · Zbl 1146.65064
[14] E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, Springer Series in Computational Mathematics 31, Springer-Verlag, Berlin Heidelberg, 2006, https://doi.org/10.1007/3-540-30666-8. · Zbl 1094.65125
[15] E. Hairer, S. P. Nørsett, and G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems, Springer Series in Computational Mathematics 8, Springer-Verlag, Berlin Heidelberg, 2008, https://doi.org/10.1007/978-3-540-78862-1. · Zbl 1185.65115
[16] E. Hairer and G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, Springer Series in Computational Mathematics 14, Springer-Verlag, Berlin Heidelberg, 2010, https://doi.org/10.1007/978-3-642-05221-7. · Zbl 1192.65097
[17] I. Higueras, Monotonicity for Runge-Kutta methods: Inner product norms, J. Sci. Comput., 24 (2005), pp. 97-117, https://doi.org/10.1007/s10915-004-4789-1. · Zbl 1078.65554
[18] D. I. Ketcheson, Highly efficient strong stability-preserving Runge-Kutta methods with low-storage implementations, SIAM J. Sci. Comput., 30 (2008), pp. 2113-2136, https://doi.org/10.1137/07070485X. · Zbl 1168.65382
[19] D. I. Ketcheson, Relaxation Runge-Kutta methods: Conservation and stability for inner-product norms, SIAM J. Numer. Anal., 57 (2019), pp. 2850-2870, https://doi.org/10.1137/19M1263662. · Zbl 1427.65115
[20] C. Koenders, K.-H. Glassmeier, I. Richter, H. Ranocha, and U. Motschmann, Dynamical features and spatial structures of the plasma interaction region of \(67P\)/Churyumov-Gerasimenko and the solar wind, Planetary and Space Science, 105 (2015), pp. 101-116, https://doi.org/10.1016/j.pss.2014.11.014.
[21] H.-O. Kreiss and J. Lorenz, Initial-Boundary Value Problems and the Navier-Stokes Equations, Classics in Applied Mathematics 47, SIAM, Philadelphia, 2004. · Zbl 1097.35113
[22] H.-O. Kreiss and G. Scherer, Finite Element and Finite Difference Methods for Hyperbolic Partial Differential Equations, in Mathematical Aspects of Finite Elements in Partial Differential Equations, C. de Boor, ed., New York, 1974, Academic Press, pp. 195-212. · Zbl 0355.65085
[23] J. Nordström and M. Björck, Finite volume approximations and strict stability for hyperbolic problems, Appl. Numer. Math., 38 (2001), pp. 237-255, https://doi.org/10.1016/S0168-9274(01)00027-7. · Zbl 0985.65103
[24] J. Nordström and T. Lundquist, Summation-by-parts in time, J. Comput. Phys., 251 (2013), pp. 487-499, https://doi.org/10.1016/j.jcp.2013.05.042. · Zbl 1349.65399
[25] P. Öffner, J. Glaubitz, and H. Ranocha, Analysis of artificial dissipation of explicit and implicit time-integration methods, Int. J. Numer. Anal. Model., 17 (2020), pp. 332-349.
[26] P. Öffner and H. Ranocha, Error boundedness of discontinuous Galerkin methods with variable coefficients, J. Sci. Comput., 79 (2019), pp. 1572-1607, https://doi.org/10.1007/s10915-018-00902-1. · Zbl 1418.65161
[27] C. Rackauckas and Q. Nie, DifferentialEquations.jl – A performant and feature-rich ecosystem for solving differential equations in Julia, J. Open Res. Softw., 5 (2017), p. 15, https://doi.org/10.5334/jors.151.
[28] H. Ranocha, Some notes on summation by parts time integration methods, Results Appl. Math., 1 (2019), 100004, https://doi.org/10.1016/j.rinam.2019.100004. · Zbl 1453.65161
[29] H. Ranocha, On strong stability of explicit Runge-Kutta methods for nonlinear semibounded operators, IMA J. Numer. Anal., (2020), https://doi.org/10.1093/imanum/drz070.
[30] H. Ranocha, L. Dalcin, and M. Parsani, Fully-discrete explicit locally entropy-stable schemes for the compressible Euler and Navier-Stokes equations, Comput. Math. Appl., 80 (2020), pp. 1343-1359, https://doi.org/10.1016/j.camwa.2020.06.016. · Zbl 07244266
[31] H. Ranocha and D. I. Ketcheson, EnergyStabilityExplicitRungeKuttaNonlinearNonautonomous. Energy Stability of Explicit Runge-Kutta Methods for Non-autonomous or Nonlinear Problems, https://github.com/ranocha/EnergyStabilityExplicitRungeKuttaNonlinearNonautonomous, 09 2019, https://doi.org/10.5281/zenodo.3464243.
[32] H. Ranocha and D. I. Ketcheson, Relaxation Runge-Kutta methods for Hamiltonian problems, J. Sci. Comput., 84 (2020), https://doi.org/10.1007/s10915-020-01277-y. · Zbl 1456.65050
[33] H. Ranocha, L. Lóczi, and D. I. Ketcheson, General relaxation methods for initial-value problems with application to multistep schemes, preprint, arXiv:2003.03012, 2020, https://arxiv.org/abs/2003.03012.
[34] H. Ranocha and J. Nordström, A class of A stable summation by parts time integration schemes, preprint, arXiv:2003.03889, 2020, https://arxiv.org/abs/2003.03889.
[35] H. Ranocha and P. Öffner, \(L_2\) stability of explicit Runge-Kutta schemes, J. Sci. Comput., 75 (2018), pp. 1040-1056, https://doi.org/10.1007/s10915-017-0595-4. · Zbl 1398.65188
[36] H. Ranocha, P. Öffner, and T. Sonar, Summation-by-parts operators for correction procedure via reconstruction, J. Comput. Phys., 311 (2016), pp. 299-328, https://doi.org/10.1016/j.jcp.2016.02.009. · Zbl 1349.65524
[37] H. Ranocha, K. Ostaszewski, and P. Heinisch, Numerical methods for the magnetic induction equation with Hall effect and projections onto divergence-free vector fields, preprint, arXiv:1810.01397, 2018, https://arxiv.org/abs/1810.01397.
[38] H. Ranocha, M. Sayyari, L. Dalcin, M. Parsani, and D. I. Ketcheson, Relaxation Runge-Kutta methods: Fully-discrete explicit entropy-stable schemes for the compressible Euler and Navier-Stokes equations, SIAM J. Sci. Comput., 42 (2020), pp. A612-A638, https://doi.org/10.1137/19M1263480. · Zbl 1432.76207
[39] D. Rojas, R. Boukharfane, L. Dalcin, D. C. D. R. Fernández, H. Ranocha, D. E. Keyes, and M. Parsani, On the Robustness and Performance of Entropy Stable Discontinuous Collocation Methods, preprint, arXiv:1911.10966, 2019, https://arxiv.org/abs/1911.10966.
[40] J. T. Schwartz, Nonlinear Functional Analysis, vNotes on Mathematics and Its Applications 4, Gordon and Breach Science Publishers Inc., New York, 1969.
[41] C.-W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phys., 77 (1988), pp. 439-471, https://doi.org/10.1016/0021-9991(88)90177-5. · Zbl 0653.65072
[42] Z. Sun and C.-W. Shu, Stability of the fourth order Runge-Kutta method for time-dependent partial differential equations, Ann. Math. Sci. Appl., 2 (2017), pp. 255-284, https://doi.org/10.4310/AMSA.2017.v2.n2.a3. · Zbl 1381.65079
[43] Z. Sun and C.-W. Shu, Enforcing Strong Stability of Explicit Runge-Kutta Methods with Superviscosity, preprint, arXiv:1912.11596, 2019, https://arxiv.org/abs/1912.11596.
[44] Z. Sun and C.-W. Shu, Strong stability of explicit Runge-Kutta time discretizations, SIAM J. Numer. Anal., 57 (2019), pp. 1158-1182, https://doi.org/10.1137/18M122892X. · Zbl 1422.65224
[45] M. Svärd and J. Nordström, Review of summation-by-parts schemes for initial-boundary-value problems, J. Comput. Phys., 268 (2014), pp. 17-38, https://doi.org/10.1016/j.jcp.2014.02.031. · Zbl 1349.65336
[46] E. Tadmor, From semidiscrete to fully discrete: Stability of Runge-Kutta schemes by the energy method II, in Collected Lectures on the Preservation of Stability under Discretization, D. J. Estep and S. Tavener, eds., vol. of Proceedings in Applied Mathematics 109, SIAM, Philadelphia, 2002, pp. 25-49.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.