×

zbMATH — the first resource for mathematics

The Gompertz-Makeham longevity model. (Spanish) Zbl 1460.91190
The present work presents a detailed description of the main risk indicators that are managed in the area of longevity, in the context of probability and statistics. The base model of mortality in human populations relies on the Gompertz-Makeham distribution, although it does not explain situations such as the bath effect in infant mortality or population dynamics over time.
MSC:
91D20 Mathematical geography and demography
Software:
DLMF; SPLIDA
PDF BibTeX XML Cite
Full Text: Link
References:
[1] P. Barrieu, H. Bensusan, N. El Karoui, C. Hillairet, S. Loisel, C. Ravanelli y Y. Salhi, ((Understanding, modelling and managing longevity risk: key issues and main challenges)),Scandinavian Actuarial Journal, vol. 2012, n´um. 3, 2012, 203-231. · Zbl 1277.91073
[2] D. Barry, J.-Y. Parlange, L. Li, H. Prommer, C. Cunningham y F. Stagnitti,((Erratum to “Analytical approximations for real values of the Lambert W-function” [Mathematics and Computers in Simulation 53 (2000) 95-103])),Mathematics and Computers in Simulation, vol. 59, 2002, 543.
[3] D. Barry, J.-Y. Parlange, L. Li, H. Prommer, C. Cunningham y F. Stagnitti, ((Analytical approximations for real values of the Lambert W-function)),Mathematics and Computers in Simulation (MATCOM), vol. 53, n´um. 1, 2000, 95-103.
[4] E. Biffis,((Affine processes for dynamic mortality and actuarial valuations)),Insurance: Mathematics and Economics, vol. 37, n´um. 3, 2005, 443-468. · Zbl 1129.91024
[5] N. L. Bowers Jr., H. U. Gerber, J. C. Hickman, D. A. Jones y C. J. Nesbitt,Actuarial mathematics, The Society of Actuaries, Schaumburg, Il., 1997. · Zbl 0634.62107
[6] W. E. Boyce y R. C. DiPrima,Elementary differential equations and boundary value problems, 10.aed., John Wiley & Sons, 2012.
[7] J. F. Carriere,((An investigation of the Gompertz law of mortality)),Actuarial Research Clearing House, n´um. 2, 1994, 161-167.
[8] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey y D. E. Knuth,((On the LambertWfunction)),Advances in Computational Mathematics, vol. 5, n´um. 1, 1996, 329-359.
[9] ((NIST Digital Library of Mathematical Functions)), http://dlmf.nist.gov/, Release 1.0.24 of 2019-09-15, F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds.
[10] R. M. Dudley,Real Analysis and Probability, Chapman and Hall/CRC, N.Y., 1989.
[11] X. Feng, G. He y Abdurishit,((Estimation of parameters of the Makeham distribution using the least squares method)),Mathematics and Computers in Simulation, vol. 77, n´um. 1, 2008, 34-44. · Zbl 1131.62088
[12] V. M. Garc´ıa Guerrero y M. O. Mellado,((Proyecci´on estoc´astica de la mortalidad mexicana por medio del m´etodo de Lee-Carter)),Estudios demogr´aficos y urbanos, vol. 27, n´um. 2, 2012, 409-448.
[13] M. L. Garg, B. R. Rao y C. K. Redmond,((Maximum-likelihood estimation of the parameters of the Gompertz survival function)),J. of the Royal Statistical Society: Series C, vol. 19, n´um. 2, 1970, 152-159.
[14] B. Gompertz,((On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies)),Philosophical Transactions of the Royal Society, vol. 115, 1825, 513-585.
[15] P. Jodr´a,((A closed-form expression for the quantile function of the GompertzMakeham distribution)),Mathematics and Computers in Simulation, vol. 79, 2009, 3069-3075.
[16] D. Kunimura,((The Gompertz distribution estimation of parameters)),Actuarial Research Clearing House, vol. 2, 1998, 65-76.
[17] R. D. Lee y L. R. Carter,((Modeling and Forecasting U.S. Mortality)),J. of the American Statistical Association, vol. 87, n´um. 419, 1992, 659-671.
[18] A. Lenart,((The moments of the Gompertz distribution and maximum likelihood estimation of its parameters)),Scandinavian Actuarial Journal, vol. 2014, n´um. 3, 2014, 255-277. · Zbl 1401.62210
[19] G. Levy y B. Levin,The Biostatistics of aging: from Gompertzian mortality to an index of aging-relatedness, John Wiley & Sons, N.J., 2014.
[20] W. M. Makeham,((On the law of mortality and the construction of annuity tables)), The Assurance Magazine, and J. of the Institute of Actuaries, vol. 8, n´um. 6, 1860, 301-310.
[21] A. Marshall y I. Olkin,Life Distributions, Springer-Verlag, N.Y., 2007. · Zbl 1304.62019
[22] W. Q. Meeker y L. A. Escobar,Statistical Methods for Reliability Data, John Wiley & Sons, N.Y., 1998. · Zbl 0949.62086
[23] T. I. Missov y A. Lenart,((Linking period and cohort life-expectancy linear increases in gompertz proportional hazards models)),Demographic Research, vol. 24, n´um. 19, 2011, 455-468.
[24] T. Missov y A. Lenart,((Gompertz-Makeham life expectancies: expressions and applications)),Theoretical Population Biology, vol. 90, 2013, 29-35. · Zbl 1303.91138
[25] F. Norstrom,((The Gompertz-Makeham distribution)), tesis de maestr´ıa, Ume˚a University, 1997.
[26] OECD,Mortality Assumptions and Longevity Risk, OECD iLibrary, 2014.
[27] J. S. Pai,((Generating random variates with a given force of mortality and finding a suitable force of mortality by theoretical quantile-quantile plots)),Actuarial Research Clearing House, vol. 1, 1997, 293-312.
[28] H. S. Park,((The survival probability of mortality intensity with jump-diffusion)),J. of the Korean Statistical Society, vol. 37, n´um. 4, 2008, 355-363. · Zbl 1293.60082
[29] A. D. Polyanin y A. V. Manzhirov,Handbook of Mathematics for Engineers and Scientists, Taylor & Francis, B.R., 2007. · Zbl 1267.00006
[30] C. E. Raphael, J. A. Finegold, A. J. Barron, Z. I. Whinnett, J. Mayet, C. Linde, J. G. F. Cleland, W. C. Levy y D. P. Francis,((The effect of duration of follow-up and presence of competing risk on lifespan-gain from implantable cardioverter defibrillator therapy: who benefits the most?)),European Heart Journal, vol. 36, n´um. 26, 2015, 1676-1688.
[31] R. E. Ricklefs y A. Scheuerlein,((Biological Implications of the Weibull and Gompertz Models of Aging)),The Journals of Gerontology: Series A, vol. 57, n´um. 2, 2002, B69- B76.
[32] G. M. Scarpello, D. Ritelli y D. Spelta,((Actuarial values calculated using the incomplete Gamma function)),Statistica, vol. 66, n´um. 1, 2006, 77-84. · Zbl 1188.62300
[33] SINAIS,((SistemaNacionaldeInformaci´onenSalud)),2012, http://www.dgis.salud.gob.mx/.
[34] D. A. Sprott,Statistical Inference in Science, Springer Verlag, N.Y., 2000. · Zbl 0955.62006
[35] J.-L. Wang, H.-G. Muller y W. B. Capra,((Analysis of oldest-old mortality: lifetables revisited)),The Annals of Statistics, vol. 26, n´um. 1, 1998, 126-163. · Zbl 0930.62040
[36] D. Zwillinger,CRC Standard mathematical tables, 33.aed., Taylor & Francis, B.R., 2018.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.