×

zbMATH — the first resource for mathematics

A simple diffuse interface approach on adaptive Cartesian grids for the linear elastic wave equations with complex topography. (English) Zbl 1452.74113
Summary: In most classical approaches of computational geophysics for seismic wave propagation problems, complex surface topography is either accounted for by boundary-fitted unstructured meshes, or, where possible, by mapping the complex computational domain from physical space to a topologically simple domain in a reference coordinate system. However, all these conventional approaches face problems if the geometry of the problem becomes sufficiently complex. They either need a mesh generator to create unstructured boundary-fitted grids, which can become quite difficult and may require a lot of manual user interactions in order to obtain a high quality mesh, or they need the explicit computation of an appropriate mapping function from physical to reference coordinates. For sufficiently complex geometries such mappings may either not exist or their Jacobian could become close to singular. Furthermore, in both conventional approaches low quality grids will always lead to very small time steps due to the Courant-Friedrichs-Lewy (CFL) condition for explicit schemes. In this paper, we propose a completely different strategy that follows the ideas of the successful family of high resolution shock-capturing schemes, where discontinuities can actually be resolved anywhere on the grid, without having to fit them exactly. We address the problem of geometrically complex free surface boundary conditions for seismic wave propagation problems with a novel diffuse interface method (DIM) on adaptive Cartesian meshes (AMR) that consists in the introduction of a characteristic function \(0 \leq \alpha \leq 1\) which identifies the location of the solid medium and the surrounding air (or vacuum) and thus implicitly defines the location of the free surface boundary. Physically, \({\alpha}\) represents the volume fraction of the solid medium present in a control volume. Our new approach completely avoids the problem of mesh generation, since all that is needed for the definition of the complex surface topography is to set a scalar color function to unity inside the regions covered by the solid and to zero outside. The governing equations are derived from ideas typically used in the mathematical description of compressible multiphase flows. An analysis of the eigenvalues of the PDE system shows that the complexity of the geometry has no influence on the admissible time step size due to the CFL condition. The model reduces to the classical linear elasticity equations inside the solid medium where the gradients of \({\alpha}\) are zero, while in the diffuse interface zone at the free surface boundary the governing PDE system becomes nonlinear. We can prove that the solution of the Riemann problem with arbitrary data and a jump in \({\alpha}\) from unity to zero yields a Godunov-state at the interface that satisfies the free-surface boundary condition exactly, i.e. the normal stress components vanish. In the general case of an interface that is not aligned with the grid and which is not infinitely thin, a systematic study on the distribution of the volume fraction function inside the interface and the sensitivity with respect to the thickness of the diffuse interface layer has been carried out. In order to reduce numerical dissipation, we use high order discontinuous Galerkin (DG) finite element schemes on adaptive AMR grids together with a second order accurate high resolution shock capturing subcell finite volume (FV) limiter in the diffuse interface region. We furthermore employ a little dissipative HLLEM Riemann solver, which is able to resolve the steady contact discontinuity associated with the volume fraction function and the spatially variable material parameters exactly. While the method is locally high order accurate in the regions without limiter, the global order of accuracy of the scheme is at most two if the limiter is activated. It is locally of order one inside the diffuse interface region, which is typical for shock-capturing schemes at shocks and contact discontinuities. We show a large set of computational results in two and three space dimensions involving complex geometries where the physical interface is not aligned with the grid or where it is even moving. For all test cases we provide a quantitative comparison with classical approaches based on boundary-fitted unstructured meshes.
MSC:
74S05 Finite element methods applied to problems in solid mechanics
74S10 Finite volume methods applied to problems in solid mechanics
74J05 Linear waves in solid mechanics
65M50 Mesh generation, refinement, and adaptive methods for the numerical solution of initial value and initial-boundary value problems involving PDEs
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
86A15 Seismology (including tsunami modeling), earthquakes
86-08 Computational methods for problems pertaining to geophysics
65Z05 Applications to the sciences
Software:
Peano
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Madariaga, R., Dynamics of an expanding circular fault, Bull. Seismol. Soc. Am., 66, 639-666 (1976)
[2] Virieux, J., Sh-wave propagation in heterogeneous media: velocity – stress finite – difference method, Geophysics, 49, 1933-1942 (1984)
[3] Virieux, J., P-sv wave propagation in heterogeneous media: velocity – stress finite – difference method, Geophysics, 51, 889-901 (1986)
[4] Levander, A., Fourth-order finite difference p-sv seismograms, Geophysics, 53, 1425-1436 (1988)
[5] Mora, P., Modeling anisotropic seismic waves in 3-d, ((1989), SEG Society of Exploration Geophysicists), 1039-1043
[6] Moczo, P.; Kristek, J.; Vavrycuk, V.; Archuleta, R.; Halada, L., 3D heterogeneous staggered-grid finite-difference modeling of seismic motion with volume harmonic and arithmetic averaging of elastic moduli and densities, Bull. Seismol. Soc. Am., 92, 3042-3066 (2002)
[7] Igel, H.; Mora, P.; Riollet, B., Anisotropic wave propagation through finite-difference grids, Geophysics, 60, 1203-1216 (1995)
[8] Tessmer, E., 3-d seismic modelling of general material anisotropy in the presence of the free surface by a chebyshev spectral method, Geophys. J. Int., 121, 557-575 (1995)
[9] Magnier, S.; Mora, P., Finite differences on minimal grids, Geophysics, 59, 1435-1443 (1994)
[10] Käser, M.; Igel, H., Numerical simulation of 2d wave propagation on unstructured grids using explicit differential operators, Geophys. Prospect., 49, 607-619 (2001)
[11] Käser, M.; Igel, H., A comparative study of explicit differential operators on arbitrary grids, J. Comput. Acoust., 9, 1111-1125 (2001) · Zbl 1360.65211
[12] Wang, Z., Spectral (finite) volume method for conservation laws on unstructured grids: basic formulation, J. Comput. Phys., 178, 210-251 (2002) · Zbl 0997.65115
[13] Wang, Z.; Liu, Y., Spectral (finite) volume method for conservation laws on unstructured grids II: extension to two-dimensional scalar equation, J. Comput. Phys., 179, 665-697 (2002) · Zbl 1006.65113
[14] Wang, Z.; Liu, Y., Spectral (finite) volume method for conservation laws on unstructured grids III: one-dimensional systems and partition optimization, J. Sci. Comput., 20, 137-157 (2004) · Zbl 1097.65100
[15] Wang, Z.; Liu, Y., Spectral (finite) volume method for conservation laws on unstructured grids IV: extension to two-dimensional systems, J. Comput. Phys., 194, 716-741 (2004) · Zbl 1039.65072
[16] Tadi, M., Finite volume method for 2D elastic wave propagation, Bull. Seismol. Soc. Am., 94, 1500-1509 (2004)
[17] Dormy, E.; Tarantola, A., Numerical simulation of elastic wave propagation using a finite volume method, J. Geophys. Res., 100, 2123-2133 (1995)
[18] Dumbser, M.; Käser, M., Arbitrary high order finite volume schemes for seismic wave propagation on unstructured meshes in 2d and 3d, Geophys. J. Int., 171, 665-694 (2007)
[19] Kristeková, M.; Kristek, J.; Moczo, P.; Day, S., Misfit criteria for quantitative comparison of seismograms, Bull. Seismol. Soc. Am., 96, 1836-1850 (2006)
[20] Kristeková, M.; Kristek, J.; Moczo, P., Time-frequency misfit and goodness-of-fit criteria for quantitative comparison of time signals, Geophys. J. Int., 178, 813-825 (2009)
[21] Käser, M.; Hermann, V.; de la Puente, J., Quantitative accuracy analysis of the discontinuous Galerkin method for seismic wave propagation, Geophys. J. Int., 173, 990-999 (2008)
[22] Moczo, P.; Kristek, J.; Galis, M.; Pazak, P., On accuracy of the finite-difference and finite-element schemes with respect to P-wave to S-wave speed ratio, Geophys. J. Int., 182, 493-510 (2010)
[23] Patera, A. T., A spectral-element method for fluid dynamics: laminar flow in a channel expansion, J. Comput. Phys., 144, 45-58 (1984)
[24] Priolo, E.; Carcione, J.; Seriani, G., Numerical simulation of interface waves by high-order spectral modeling techniques, J. Comput. Phys., 144, 45-58 (1984)
[25] Komatitsch, D.; Vilotte, J., The spectral-element method: an efficient tool to simulate the seismic response of 2d and 3d geological structures, Bull. Seismol. Soc. Am., 88, 368-392 (1998) · Zbl 0974.74583
[26] Seriani, G., 3-d large-scale wave propagation modeling by a spectral-element method on a cray t3e multiprocessor, Comput. Methods Appl. Mech. Eng., 164, 235-247 (1998) · Zbl 0962.76072
[27] Komatitsch, D.; Tromp, J., Introduction to the spectral-element method for 3-d seismic wave propagation, Geophys. J. Int., 139, 806-822 (1999)
[28] Komatitsch, D.; Tromp, J., Spectral-element simulations of global seismic wave propagation-i. Validation, Geophys. J. Int., 149, 390-412 (2002)
[29] Tessmer, E.; Kosloff, D., 3-d elastic modelling with surface topography by a chebyshev spectral method, Geophysics, 59, 464-473 (1994)
[30] Igel, H., Wave propagation in three-dimensional spherical sections by the chebyshev spectral method, Geophys. J. Int., 136, 559-566 (1999)
[31] Scovazzi, G.; Carnes, B., Weak boundary conditions for wave propagation problems in confined domains: formulation and implementation using a variational multiscale method, Comput. Methods Appl. Mech. Eng., 221-222, 117-131 (2012) · Zbl 1253.65153
[32] Song, T.; Scovazzi, G., A Nitsche method for wave propagation problems in time domain, Comput. Methods Appl. Mech. Eng., 293, 481-521 (2015)
[33] Scovazzi, G.; Song, T.; Zeng, X., A velocity/stress mixed stabilized nodal finite element for elastodynamics: analysis and computations with strongly and weakly enforced boundary conditions, Comput. Methods Appl. Mech. Eng., 325, 532-576 (2017)
[34] Käser, M.; Dumbser, M., An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes - I. The two-dimensional isotropic case with external source terms, Geophys. J. Int., 166, 855-877 (2006)
[35] Dumbser, M.; Käser, M., An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes - II. The three-dimensional isotropic case, Geophys. J. Int., 167, 319-336 (2006)
[36] Dumbser, M.; Käser, M.; Toro, E. F., An arbitrary high – order Discontinuous Galerkin method for elastic waves on unstructured meshes - V. Local time stepping and p-adaptivity, Geophys. J. Int., 171, 695-717 (2007)
[37] Grote, M.; Schneebeli, A.; Schötzau, D., Discontinuous Galerkin finite element method for the wave equation, SIAM J. Numer. Anal., 44, 2408-2431 (2006) · Zbl 1129.65065
[38] Antonietti, P.; Mazzieri, I.; Quarteroni, A.; Rapetti, F., Non-conforming high order approximations of the elastodynamics equation, Comput. Methods Appl. Mech. Eng., 209-212, 212-238 (2012) · Zbl 1243.74010
[39] Antonietti, P.; Marcati, C.; Mazzieri, I.; Quarteroni, A., High order discontinuous Galerkin methods on simplicial elements for the elastodynamics equation, Numer. Algorithms, 71, 181-206 (2016) · Zbl 1398.74291
[40] van der Vegt, J. J.W.; van der Ven, H., Space – time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flows I. General formulation, J. Comput. Phys., 182, 546-585 (2002) · Zbl 1057.76553
[41] van der Ven, H.; van der Vegt, J. J.W., Space – time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flows II. Efficient flux quadrature, Comput. Methods Appl. Mech. Eng., 191, 4747-4780 (2002) · Zbl 1099.76521
[42] Klaij, C.; der Vegt, J. J.W. V.; der Ven, H. V., Space-time discontinuous Galerkin method for the compressible Navier-Stokes equations, J. Comput. Phys., 217, 589-611 (2006) · Zbl 1099.76035
[43] Rhebergen, S.; Cockburn, B., A space – time hybridizable discontinuous Galerkin method for incompressible flows on deforming domains, J. Comput. Phys., 231, 4185-4204 (2012) · Zbl 1426.76298
[44] Rhebergen, S.; Cockburn, B.; van der Vegt, J. J., A space-time discontinuous Galerkin method for the incompressible Navier-Stokes equations, J. Comput. Phys., 233, 339-358 (2013) · Zbl 1286.76033
[45] Balazsova, M.; Feistauer, M., On the stability of the ALE space-time discontinuous Galerkin method for nonlinear convection-diffusion problems in time-dependent domains, Appl. Math., 60, 501-526 (2015) · Zbl 1363.65157
[46] Balazsova, M.; Feistauer, M.; Hadrava, M.; Kosik, A., On the stability of the space-time discontinuous Galerkin method for the numerical solution of nonstationary nonlinear convection-diffusion problems, J. Numer. Math., 23, 211-233 (2015) · Zbl 1327.65168
[47] Antonietti, P.; Mazzieri, I.; Quarteroni, A.; Rapetti, F., High order space-time discretization for elastic wave propagation problems, (Azaiez, M.; Fekihand, H. E.; Hestaven, J., Proceedings of ICOSAHOM 2012. Proceedings of ICOSAHOM 2012, Lect. Notes Comput. Sci. Eng., vol. 95 (2014), Springer Verlag), 87-97 · Zbl 1417.74012
[48] Antonietti, P.; Santo, N. D.; Mazzieri, I.; Quarteroni, A., A high-order discontinuous Galerkin approximation to ordinary differential equations with applications to elastodynamics, IMA J. Numer. Anal., 38, 1709-1734 (2018) · Zbl 06983860
[49] Tavelli, M.; Dumbser, M., Arbitrary high order accurate space-time discontinuous Galerkin finite element schemes on staggered unstructured meshes for linear elasticity, J. Comput. Phys., 366, 386-414 (2018) · Zbl 1406.74647
[50] Dumbser, M.; Casulli, V., A staggered semi-implicit spectral discontinuous Galerkin scheme for the shallow water equations, Appl. Math. Comput., 219, 15, 8057-8077 (2013) · Zbl 1366.76050
[51] Tavelli, M.; Dumbser, M., A high order semi-implicit discontinuous Galerkin method for the two dimensional shallow water equations on staggered unstructured meshes, Appl. Math. Comput., 234, 623-644 (2014) · Zbl 1298.76120
[52] Tavelli, M.; Dumbser, M., A staggered arbitrary high order semi-implicit discontinuous Galerkin method for the two dimensional incompressible Navier-Stokes equations, Comput. Fluids, 119, 235-249 (2015) · Zbl 1390.76360
[53] Tavelli, M.; Dumbser, M., A staggered, space-time discontinuous Galerkin method for the three-dimensional incompressible Navier-Stokes equations on unstructured tetrahedral meshes, J. Comput. Phys., 319, 294-323 (2016) · Zbl 1349.76271
[54] Fambri, F.; Dumbser, M., Spectral semi-implicit and space-time discontinuous Galerkin methods for the incompressible Navier-Stokes equations on staggered Cartesian grids, Appl. Numer. Math., 110, 41-74 (2016) · Zbl 1432.76157
[55] Tavelli, M.; Dumbser, M., A pressure – based semi – implicit space – time discontinuous Galerkin method on staggered unstructured meshes for the solution of the compressible Navier-Stokes equations at all Mach numbers, J. Comput. Phys., 341, 341-376 (2017) · Zbl 1376.76028
[56] Fambri, F.; Dumbser, M., Semi-implicit discontinuous Galerkin methods for the incompressible Navier-Stokes equations on adaptive staggered Cartesian grids, Comput. Methods Appl. Mech. Eng., 324, 170-203 (2017)
[57] Bern, M.; Eppstein, D., Mesh generation and optimal triangulation, (Computing in Euclidean Geometry, vol. 1 (1992)), 23-90
[58] Joe, B., Construction of three-dimensional improved-quality triangulations using local transformations, SIAM J. Sci. Comput., 16, 1292-1307 (1995) · Zbl 0851.65081
[59] Fleischmann, P.; Pyka, W.; Selberherr, S., Mesh generation for application in technology cad, IEICE Trans. Electron., 82, C, 937-947 (1999)
[60] Cheng, S. W.; Dey, T. K.; Edelsbrunner, H.; Facello, M. A.; Teng, S. H., Sliver exudation, J. ACM, 47, 883-904 (2000) · Zbl 1320.68210
[61] Edelsbrunner, H.; Guoy, D., An experimental study of sliver exudation, Eng. Comput., 18, 229-240 (2002)
[62] Taube, A.; Dumbser, M.; Munz, C.; Schneider, R., A high order discontinuous Galerkin method with local time stepping for the Maxwell equations, Int. J. Numer. Model., 22, 77-103 (2009) · Zbl 1156.78012
[63] Grote, M.; Mitkova, T., High-order explicit local time-stepping methods for damped wave equations, J. Comput. Appl. Math., 239, 270-289 (2013) · Zbl 1255.65174
[64] Grote, M.; Mitkova, T., Explicit local time-stepping methods for Maxwell’s equations, J. Comput. Appl. Math., 234, 3283-3302 (2010) · Zbl 1210.78026
[65] Gao, L.; Brossier, R.; Pajot, B.; Tago, J.; Virieux, J., An immersed free-surface boundary treatment for seismic wave simulation, Geophysics, 80, T193-T209 (2015)
[66] Lombard, B.; Piraux, J.; Gélis, C.; Virieux, J., Free and smooth boundaries in 2-D finite-difference schemes for transient elastic waves, Geophys. J. Int., 172, 252-261 (2008)
[67] Hu, W., An improved immersed boundary finite-difference method for seismic wave propagation modeling with arbitrary surface topography, Geophysics, 81, T311-T322 (2016)
[68] Martin, B.; Fornberg, B., Eismic modeling with radial basis function – generated finite differences (RBF-FD) - a simplified treatment of interfaces, J. Comput. Phys., 335, 828-845 (2017)
[69] Baer, M. R.; Nunziato, J. W., A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials, Int. J. Multiph. Flow, 12, 861-889 (1986) · Zbl 0609.76114
[70] Saurel, R.; Abgrall, R., A multiphase Godunov method for compressible multifluid and multiphase flows, J. Comput. Phys., 150, 425-467 (1999) · Zbl 0937.76053
[71] Saurel, R.; Abgrall, R., A simple method for compressible multifluid flows, SIAM J. Sci. Comput., 21, 1115-1145 (1999) · Zbl 0957.76057
[72] Abgrall, R.; Nkonga, B.; Saurel, R., Efficient numerical approximation of compressible multi-material flow for unstructured meshes, Comput. Fluids, 32, 571-605 (2003) · Zbl 1084.76543
[73] Abgrall, R.; Saurel, R., Discrete equations for physical and numerical compressible multiphase mixtures, J. Comput. Phys., 186, 361-396 (2003) · Zbl 1072.76594
[74] Godunov, S. K.; Romenski, E. I., Nonstationary equations of the nonlinear theory of elasticity in Euler coordinates, J. Appl. Mech. Tech. Phys., 13, 868-885 (1972)
[75] Romenski, E., Hyperbolic systems of thermodynamically compatible conservation laws in continuum mechanics, Math. Comput. Model., 28, 115-130 (1998) · Zbl 1076.74501
[76] Romenskii, E. I., Deformation model for brittle materials and the structure of failure waves, J. Appl. Mech. Tech. Phys., 48, 3, 437-444 (2007)
[77] Peshkov, I.; Romenski, E., A hyperbolic model for viscous Newtonian flows, Contin. Mech. Thermodyn., 28, 85-104 (2016) · Zbl 1348.76046
[78] Dumbser, M.; Peshkov, I.; Romenski, E.; Zanotti, O., High order ADER schemes for a unified first order hyperbolic formulation of continuum mechanics: viscous heat-conducting fluids and elastic solids, J. Comput. Phys., 314, 824-862 (2016) · Zbl 1349.76324
[79] Dumbser, M.; Peshkov, I.; Romenski, E.; Zanotti, O., High order ADER schemes for a unified first order hyperbolic formulation of Newtonian continuum mechanics coupled with electro-dynamics, J. Comput. Phys., 348, 298-342 (2017)
[80] Romenskii, E. I.; Lys’, E. B.; Cheverda, V. A.; Epov, M. I., Dynamics of deformation of an elastic medium with initial stresses, J. Appl. Mech. Tech. Phys., 58, 914-923 (2017) · Zbl 06979336
[81] Ndanou, S.; Favrie, N.; Gavrilyuk, S., Multi-solid and multi-fluid diffuse interface model: applications to dynamic fracture and fragmentation, J. Comput. Phys., 295, 523-555 (2015) · Zbl 1349.74377
[82] Favrie, N.; Gavrilyuk, S. L., Diffuse interface model for compressible fluid-compressible elastic-plastic solid interaction, J. Comput. Phys., 231, 2695-2723 (2012) · Zbl 1430.74036
[83] Favrie, N.; Gavrilyuk, S. L., Solid-fluid diffuse interface model in cases of extreme deformations, J. Comput. Phys., 228, 6037-6077 (2009) · Zbl 1280.74013
[84] Gavrilyuk, S. L.; Favrie, N.; Saurel, R., Modelling wave dynamics of compressible elastic materials, J. Comput. Phys., 227, 2941-2969 (2008) · Zbl 1155.74020
[85] Saurel, R.; Petitpas, F.; Berry, R., Simple and efficient relaxation method for interfaces separating compressible fluids cavitating flows and shock in multiphase mixtures, J. Comput. Phys., 228, 1678-1712 (2009) · Zbl 1409.76105
[86] Kapila, A.; Menikoff, R.; Bdzil, J.; Son, S.; Stewart, D., Two-phase modeling of ddt in granular materials: reduced equations, Phys. Fluids, 13, 3002-3024 (2001) · Zbl 1184.76268
[87] Zanotti, O.; Fambri, F.; Dumbser, M.; Hidalgo, A., Space-time adaptive ADER discontinuous Galerkin finite element schemes with a posteriori subcell finite volume limiting, Comput. Fluids, 118, 204-224 (2015) · Zbl 1390.76381
[88] Dumbser, M.; Zanotti, O.; Loubère, R.; Diot, S., A posteriori subcell limiting of the discontinuous Galerkin finite element method for hyperbolic conservation laws, J. Comput. Phys., 278, 47-75 (2014) · Zbl 1349.65448
[89] Clain, S.; Diot, S.; Loubère, R., A high-order finite volume method for systems of conservation lawsmulti-dimensional optimal order detection (mood), J. Comput. Phys., 230, 4028-4050 (2011) · Zbl 1218.65091
[90] Diot, S.; Clain, S.; Loubère, R., Improved detection criteria for the multi-dimensional optimal order detection (mood) on unstructured meshes with very high-order polynomials, Comput. Fluids, 64, 43-63 (2012) · Zbl 1365.76149
[91] Dumbser, M.; Balsara, D., A new efficient formulation of the HLLEM Riemann solver for general conservative and non-conservative hyperbolic systems, J. Comput. Phys., 304, 275-319 (2016) · Zbl 1349.76603
[92] Dumbser, M.; Balsara, D. S., A new efficient formulation of the HLLEM riemann solver for general conservative and non-conservative hyperbolic systems, J. Comput. Phys., 304, 275-319 (2016) · Zbl 1349.76603
[93] Toro, E. F., Riemann Solvers and Numerical Methods for Fluid Dynamics (2009), Springer · Zbl 1227.76006
[94] Godunov, S. K.; Romenski, E. I., Elements of Continuum Mechanics and Conservation Laws (2003), Kluwer Academic/ Plenum Publishers
[95] Bedford, A.; Drumheller, D., Elastic Wave Propagation (1994), Wiley: Wiley Chichester, UK · Zbl 0267.73070
[96] Murrone, A.; Guillard, H., A five equation reduced model for compressible two phase flow problems, J. Comput. Phys., 202, 664-698 (2005) · Zbl 1061.76083
[97] Dumbser, M., A simple two – phase method for the simulation of complex free surface flows, Comput. Methods Appl. Mech. Eng., 200, 1204-1219 (2011) · Zbl 1225.76210
[98] Dumbser, M., A diffuse interface method for complex three-dimensional free surface flows, Comput. Methods Appl. Mech. Eng., 257, 47-64 (2013) · Zbl 1286.76099
[99] Gaburro, E.; Castro, M.; Dumbser, M., A well balanced diffuse interface method for complex nonhydrostatic free surface flows, Comput. Fluids, 175, 180-198 (2018) · Zbl 1410.76224
[100] Godunov, S. K.; Romenski, E. I., Thermodynamics, conservation laws, and symmetric forms of differential equations in mechanics of continuous media, (Computational Fluid Dynamics Review, vol. 95 (1995), John Wiley: John Wiley NY), 19-31 · Zbl 0875.73025
[101] Romenski, E.; Drikakis, D.; Toro, E., Conservative models and numerical methods for compressible two-phase flow, J. Sci. Comput., 42, 68-95 (2010) · Zbl 1203.76095
[102] Castro, M. J.; Gallardo, J. M.; Parés, C., High-order finite volume schemes based on reconstruction of states for solving hyperbolic systems with nonconservative products. Applications to shallow-water systems, Math. Comput., 75, 1103-1134 (2006) · Zbl 1096.65082
[103] Parés, C., Numerical methods for nonconservative hyperbolic systems: a theoretical framework, SIAM J. Numer. Anal., 44, 300-321 (2006) · Zbl 1130.65089
[104] Dumbser, M.; Toro, E. F., A simple extension of the Osher Riemann solver to non-conservative hyperbolic systems, J. Sci. Comput., 48, 70-88 (2011) · Zbl 1220.65110
[105] Maso, G. D.; LeFloch, P. G.; Murat, F., Definition and weak stability of nonconservative products, J. Math. Pures Appl., 74, 483-548 (1995) · Zbl 0853.35068
[106] Dumbser, M.; Castro, M.; Parés, C.; Toro, E., ADER schemes on unstructured meshes for non – conservative hyperbolic systems: applications to geophysical flows, Comput. Fluids, 38, 1731-1748 (2009) · Zbl 1177.76222
[107] Dumbser, M.; Hidalgo, A.; Castro, M.; Parés, C.; Toro, E. F., FORCE schemes on unstructured meshes II: non – conservative hyperbolic systems, Comput. Methods Appl. Mech. Eng., 199, 625-647 (2010) · Zbl 1227.76043
[108] Harten, A.; Engquist, B.; Osher, S.; Chakravarthy, S., Uniformly high order essentially non-oscillatory schemes, III, J. Comput. Phys., 71, 231-303 (1987) · Zbl 0652.65067
[109] Dumbser, M.; Balsara, D. S.; Toro, E. F.; Munz, C. D., A unified framework for the construction of one – step finite – volume and discontinuous Galerkin schemes, J. Comput. Phys., 227, 8209-8253 (2008) · Zbl 1147.65075
[110] Dumbser, M.; Zanotti, O.; Hidalgo, A.; Balsara, D., ADER-WENO finite volume schemes with space-time adaptive mesh refinement, J. Comput. Phys., 248, 257-286 (2013) · Zbl 1349.76325
[111] Bungartz, H.; Mehl, M.; Neckel, T.; Weinzierl, T., The PDE framework Peano applied to fluid dynamics: an efficient implementation of a parallel multiscale fluid dynamics solver on octree-like adaptive Cartesian grids, Comput. Mech., 46, 103-114 (2010) · Zbl 1301.76056
[112] Weinzierl, T.; Mehl, M., Peano-A traversal and storage scheme for octree-like adaptive Cartesian multiscale grids, SIAM J. Sci. Comput., 33, 2732-2760 (2011) · Zbl 1245.65169
[113] Khokhlov, A., Fully threaded tree algorithms for adaptive refinement fluid dynamics simulations, J. Comput. Phys., 143, 2, 519-543 (1998) · Zbl 0934.76057
[114] Zanotti, O.; Fambri, F.; Dumbser, M.; Hidalgo, A., Space-time adaptive ADER discontinuous Galerkin finite element schemes with a posteriori subcell finite volume limiting, Comput. Fluids, 118, 204-224 (2015) · Zbl 1390.76381
[115] Zanotti, O.; Fambri, F.; Dumbser, M., Solving the relativistic magnetohydrodynamics equations with ADER discontinuous Galerkin methods, a posteriori subcell limiting and adaptive mesh refinement, Mon. Not. R. Astron. Soc., 452, 3010-3029 (2015)
[116] Fambri, F.; Dumbser, M.; Zanotti, O., Space-time adaptive ADER-DG schemes for dissipative flows: compressible Navier-Stokes and resistive MHD equations, Comput. Phys. Commun., 220, 297-318 (2017)
[117] Käser, M.; Dumbser, M., A highly accurate discontinuous Galerkin method for complex interfaces between solids and moving fluids, Geophysics, 73, T23-T35 (2008)
[118] Käser, M.; Dumbser, M., An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes - I. The two-dimensional isotropic case with external source terms, Geophys. J. Int., 166, 855-877 (2006)
[119] Dumbser, M.; Hidalgo, A.; Zanotti, O., High order space-time adaptive ADER-WENO finite volume schemes for non-conservative hyperbolic systems, Comput. Methods Appl. Mech. Eng., 268, 359-387 (2014) · Zbl 1295.65088
[120] Breuer, A.; Heinecke, A.; Bader, M.; Pelties, C., Accelerating SeisSol by generating vectorized code for sparse matrix operators, Adv. Parallel Comput., 25, 347-356 (2014)
[121] Breuer, A.; Heinecke, A.; Rettenberger, S.; Bader, M.; Gabriel, A.; Pelties, C., Sustained petascale performance of seismic simulations with SeisSol on SuperMUC, Lect. Notes Comput. Sci., 8488, 1-18 (2014)
[122] Day, S., Tests of 3D elastodynamics codes (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.