zbMATH — the first resource for mathematics

A non-homogeneous Poisson process geostatistical model with spatial deformation. (English) Zbl 1457.62369
Summary: In this paper, we propose a geostatistical model for the counting process using a non-homogeneous Poisson model. This work aims to model the intensity function as the sum of two components: spatial and temporal. The spatial component is modeled using a Gaussian process in which the covariance structure is assumed to be anisotropic. Anisotropy is incorporated by applying a spatial deformation approach. The temporal component is modeled in such a way that its behavior concerning time has the structure of a Goel process. The inferences for the proposed model are obtained from a Bayesian perspective. The parameter estimation is obtained using Markov Chain Monte Carlo methods. The proposed model is adjusted to a set of real data, referring to the rain precipitation in 29 monitoring stations, distributed in the states of Maranhão and Piauí, in the northeast region of Brazil, in 31 years, from 01/01/1980 to 12/31/2010. The objective is to estimate the frequency of rain that exceeded a certain threshold.
62P12 Applications of statistics to environmental and related topics
62P35 Applications of statistics to physics
62F15 Bayesian inference
62M30 Inference from spatial processes
60G55 Point processes (e.g., Poisson, Cox, Hawkes processes)
65C05 Monte Carlo methods
86A32 Geostatistics
CODA; maptools; R
Full Text: DOI
[1] Achcar, J.A., Dey, D.K., Niverthi, M.: A Bayesian approach using nonhomogeneous Poisson processes for software reliability models. In: Basu, A.P., Basu, K.S., Mukhopadhyay, S. (eds.) Frontiers in Reliability, pp. 1-18 World Scientific, Singapore (1998) · Zbl 0936.62110
[2] Adámoli, J., Macêdo, J., Azevedo, L., Netto, J.: Caracterização da região dos cerrados. Solos dos cerrados: tecnologias e estratégias de manejo p 33 - 98 (1987)
[3] Alho, C.J.R., Martins, E.S.: De grão em grão, o Cerrado perde espaco. WWF-Fundo Mundial para a Natureza, Brasília (1995)
[4] Bivand, R., Lewin-Koh, N.: maptools: Tools for Handling Spatial Objects (2019). https://CRAN.R-project.org/package=maptools, r package version 0.9-5
[5] Bruno, F.; Guttorp, P.; Sampson, P.; Cocchi, D., A simple non-separable, non-stationary spatiotemporal model for ozone, Environ. Ecol. Stat., 16, 515-529 (2008)
[6] Cifuentes-Amado, M.; Cepeda-Cuervo, E., Non-homogeneous poisson process to model seasonal events: application to the health diseases, Int. J. Stat. Med. Res., 4, 337-346 (2015)
[7] Cox, DR, Some statistical methods connected with series of events, J. R. Stat. Soc. Ser. B (Methodological), 17, 2, 129-164 (1955) · Zbl 0067.37403
[8] Damian, D.; Sampson, P.; Guttorp, P., Bayesian estimation of semi-parametric non-stationary spatial covariance structure, Environmetrics, 12, 161-178 (2001)
[9] Dryden, I.; Mardia, K., Statistical Shape Analysis. Wiley Series in Probability and Statistics (1998), Chichester: Wiley, Chichester · Zbl 0901.62072
[10] Fouedjio, F.; Desassis, N.; Romary, T., Estimation of space deformation model for non-stationary random functions, Spatial Stat., 13, 45-61 (2015)
[11] Gelman, A.; Rubin, DB, Inference from iterative simulation using multiple sequences, Stat Sci, 7, 457-472 (1992) · Zbl 1386.65060
[12] Goel, A.: A guidebook for software reliability assessment, p. 1983. Ft, Belvoir Defense Technical Information Center AUG (1983)
[13] Gomes, HB; Ambrizzi, T.; Herdies, DL; Hodges, K.; Silva, BF, Easterly wave disturbances over northeast brazil: an observational analysis, Adv. Meteorol., 2015, 1-20 (2015)
[14] Hastings, WK, Monte carlo sampling methods using markov chains and their applications, Biometrika, 57, 1, 97-109 (1970) · Zbl 0219.65008
[15] Ingebrigtsen, R.; Lindgren, F.; Steinsland, I., Spatial models with explanatory variables in the dependence structure, Spatial Stat., 8, 20-38 (2014)
[16] Kendall, DG, Shape manifolds, procrustean metrics, and complex projective spaces, Bull. Lond. Math. Soc., 16, 81 (1984) · Zbl 0579.62100
[17] Kuo, L.; Yang, T., Bayesian computation for nonhomogeneous poisson processes in software reliability, J. Am. Stat. Assoc., 91, 763-773 (1996) · Zbl 0869.62068
[18] Lawson, A.: Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology (2009). 10.1201/9781584888413 · Zbl 1165.62083
[19] Marengo, J.A., Nobre, C.A.: Clima da região amazônica. in: Cavalcanti, i. f. a. (org.). tempo e clima do brasil. São Paulo: Oficinas de Textos, pp. 198-212 (2009)
[20] Marengo, JA; Rodrigues, R.; Alves, L., Drought in northeast brazil-past, present, and future, Theor. Appl. Climatol., 129, 1189-1200 (2017)
[21] Mendonca, F.; Danni-Oliveira, IM, Climatologia: Noções básicas e climas do brasil, 198-206 (2007), São Paulo: Oficinas de Textos, São Paulo
[22] Metropolis, N.; Rosenbluth, AW; Rosenbluth, MN; Teller, AH; Teller, E., Equation of state calculations by fast computing machines, J. Chem. Phys., 21, 6, 1087-1092 (1953) · Zbl 1431.65006
[23] Moller, J.; Syversveen, AR; Waagepetersen, RP, Log gaussian cox processes, Scand. J. Stat., 25, 451-482 (1998) · Zbl 0931.60038
[24] Morales, F.; Gamerman, D.; Paez, M., State space models with spatial deformation, Environ. Ecol. Stat., 20, 191-214 (2013)
[25] Morales, F.; Vicini, L.; Hotta, LK; Achcar, J., A nonhomogeneous poisson process geostatistical model, Stoch. Environ. Res. Risk Assessment, 31, 493-507 (2017)
[26] Nascimento, FdC; Braga, CC; Araújo, FR, Análise estatística dos eventos secos e chuvosos de precipitação do estado do maranhão, Rev. Bras. Meteorol., 32, 375-386 (2017)
[27] Oliveira, PT; Santos e. Silva, CM; Lima, KC, Climatology and trend analysis of extreme precipitation in subregions of northeast brazil, Theor. Appl. Climatol., 130, 77-90 (2017)
[28] Plummer, M.; Best, N.; Cowles, K.; Vines, K., Coda: convergence diagnosis and output analysis for mcmc, R News, 6, 1, 7-11 (2006)
[29] R Core Team.: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2019). https://www.R-project.org/
[30] Reddy, SJ, Climatic classification: the semi-arid tropics and its environment: a review, Pesquisa Agropecuária Bras., 18, 823-847 (1983)
[31] Rodrigues, D.T., Goncalves, W.A., Spyrides, M.H., Santos e Silva, C.M.: Spatial and temporal assessment of the extreme and daily precipitation of the tropical rainfall measuring mission satellite in northeast brazil. Int. J. Remote Sens. (2019). 10.1080/01431161.2019.1643940
[32] Rodrigues, E.; Gamerman, D.; Tarumoto, M.; Tzintzun, G., A non-homogeneous poisson model with spatial anisotropy applied to ozone data from mexico city, Environ. Ecol. Stat., 22, 393-422 (2014)
[33] Sampson, PD; Guttorp, P., Nonparametric estimation of nonstationary spatial covariance structure, J. Am. Stat. Assoc., 87, 417, 108-119 (1992)
[34] Schmidt, A.; Gelfand, A., A bayesian coregionalization approach to multivariate pollutant data, J. Geophys. Res. (2003)
[35] Schmidt, A.; O’Hagan, A., Bayesian inference for non-stationary spatial covariance structure via spatial deformations, J. R. Stat. Soc. Ser. B, 65, 743-758 (2003) · Zbl 1063.62034
[36] Schmidt, A.; Guttorp, P.; O’Hagan, A., Considering covariates in the covariance structure of spatial processes, Environmetrics, 22, 487-500 (2011)
[37] Vicini, L.; Hotta, LK; Achcar, J., Non-homogeneous poisson process in the presence of one or more change-points: an application to air pollution data, J. Environ. Stat., 5, 1-22 (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.