zbMATH — the first resource for mathematics

Analysis of the SBP-SAT stabilization for finite element methods. I: Linear problems. (English) Zbl 1456.65100
This article discusses the stabilization for finite element method. The approach relies on the use of weakly boundary conditions and specific boundary operators are constructed such that they guarantee stability. No internal dissipation is needed even if unstructured grids are used. Numerical experiments are included to support the theoretical findings.

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI
[1] Reed, William H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. Technical Report, Los Alamos Scientific Lab., N. Mex. (USA) (1973)
[2] Cockburn, B.; Karniadakis, GE; Shu, C-W, Discontinuous Galerkin Methods: Theory, Computation and Applications (2012), Berlin: Springer, Berlin
[3] Hesthaven, JS; Warburton, T., Nodal high-order methods on unstructured grids: I. Time-domain solution of Maxwell’s equations, J. Comput. Phys., 181, 1, 186-221 (2002) · Zbl 1014.78016
[4] Chen, T.; Shu, C-W, Review of entropy stable discontinuous Galerkin methods for systems of conservation laws on unstructured simplex meshes, CSIAM Trans. Appl. Math., 1, 1-52 (2020)
[5] Gassner, GJ, A skew-symmetric discontinuous Galerkin spectral element discretization and its relation to SBP-SAT finite difference methods, SIAM J. Sci. Comput., 35, 3, A1233-A1253 (2013) · Zbl 1275.65065
[6] Carpenter, MH; Fisher, TC; Nielsen, EJ; Frankel, SH, Entropy stable spectral collocation schemes for the Navier-Stokes equations: discontinuous interfaces, SIAM J. Sci. Comput., 36, 5, B835-B867 (2014) · Zbl 1457.65140
[7] Chen, T.; Shu, C-W, Entropy stable high order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws, J. Comput. Phys., 345, 427-461 (2017) · Zbl 1380.65253
[8] Chan, J., On discretely entropy conservative and entropy stable discontinuous Galerkin methods, J. Comput. Phys., 362, 346-374 (2018) · Zbl 1391.76310
[9] Kopriva, DA; Gassner, GJ, An energy stable discontinuous Galerkin spectral element discretization for variable coefficient advection problems, SIAM J. Sci. Comput., 36, 4, A2076-A2099 (2014) · Zbl 1303.65086
[10] Ranocha, H.; Öffner, P.; Sonar, T., Summation-by-parts operators for correction procedure via reconstruction, J. Comput. Phys., 311, 299-328 (2016) · Zbl 1349.65524
[11] Kreiss, H-O; Scherer, G., Finite element and finite difference methods for hyperbolic partial differential equations, Math. Asp. Finite Elem. Partial Differ. Equ., 33, 195-212 (1974) · Zbl 0355.65085
[12] Del Rey Fernández, DC; Hicken, JE; Zingg, DW, Review of summation-by-parts operators with simultaneous approximation terms for the numerical solution of partial differential equations, Comput. Fluids, 95, 171-196 (2014) · Zbl 1390.65064
[13] Hicken, JE; Del Rey Fernaández, DC; Zingg, DW, Multidimensional summation-by-parts operators: general theory and application to simplex elements, SIAM J. Sci. Comput., 38, 4, A1935-A1958 (2016) · Zbl 1382.65355
[14] Svärd, M.; Nordström, J., Review of summation-by-parts schemes for initial-boundary-value problems, J. Comput. Phys., 268, 17-38 (2014) · Zbl 1349.65336
[15] Abgrall, R.; Bacigaluppi, P.; Tokareva, S., High-order residual distribution scheme for the time-dependent Euler equations of fluid dynamics, Comput. Math. Appl., 78, 2, 274-297 (2019) · Zbl 1442.65245
[16] Burman, E.; Ern, A.; Fernández, MA, Explicit Runge-Kutta schemes and finite elements with symmetric stabilization for first-order linear pde systems, SIAM J. Numer. Anal., 48, 6, 2019-2042 (2010) · Zbl 1226.65086
[17] Burman, E.; Hansbo, P., Edge stabilization for Galerkin approximations of convection-diffusion-reaction problems, Comput. Methods Appl. Mech. Eng., 193, 15-16, 1437-1453 (2004) · Zbl 1085.76033
[18] Gustafsson, B.; Kreiss, H-O; Oliger, J., Time Dependent Problems and Difference Methods (2013), Hoboken: Wiley, Hoboken
[19] Thomée, V.; Wendroff, B., Convergence estimates for galerkin methods for variable coefficient initial value problems, SIAM J. Numer. Anal., 11, 5, 1059-1068 (1974) · Zbl 0292.65052
[20] Mock, MS, Explicit finite element schemes for first order symmetric hyperbolic systems, Numer. Math., 26, 4, 367-378 (1976) · Zbl 0345.65045
[21] Layton, WJ, Stable Galerkin methods for hyperbolic systems, SIAM J. Numer. Anal., 20, 2, 221-233 (1983) · Zbl 0518.65084
[22] Layton, W.J.: Stable and unstable numerical boundary conditions for Galerkin approximations to hyperbolic systems. In: Hyperbolic Partial Differential Equations, Elsevier, pp. 559-566 (1983) · Zbl 0521.65080
[23] Gunzburger, MD, On the stability of Galerkin methods for initial-boundary value problems for hyperbolic systems, Math. Comput., 31, 139, 661-675 (1977) · Zbl 0395.65060
[24] Hicken, J.E: Entropy-stable, high-order discretizations using continuous summation-by-parts operators. In: AIAA Aviation 2019 Forum, p. 3206 (2019)
[25] Hicken, JE, Entropy-stable, high-order summation-by-parts discretizations without interface penalties, J. Sci. Comput., 82, 2, 50 (2020) · Zbl 1434.65184
[26] Hughes, TJR; Franca, LP; Mallet, M., A new finite element formulation for CFD: I. Symmetric forms of the compressible Euler and Navier-Stokes equations and the second law of thermodynamics, Comput. Methods Appl. Mech. Eng., 54, 223-234 (1986) · Zbl 0572.76068
[27] Nordström, J., Conservative finite difference formulations, variable coefficients, energy estimates and artificial dissipation, J. Sci. Comput., 29, 3, 375-404 (2006) · Zbl 1109.65076
[28] Nordström, J., A roadmap to well posed and stable problems in computational physics, J. Sci. Comput., 71, 1, 365-385 (2017) · Zbl 06849361
[29] Carpenter, MH; Gottlieb, D.; Abarbanel, S., Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems methodology and application to high-order compact schemes, J. Comput. Phys., 111, 2, 220-236 (1994) · Zbl 0832.65098
[30] Ranocha, H.; Öffner, P.; Sonar, T., Extended skew-symmetric form for summation-by-parts operators and varying Jacobians, J. Comput. Phys., 342, 13-28 (2017) · Zbl 1380.65318
[31] Öffner, P.; Ranocha, H., Error boundedness of discontinuous Galerkin methods with variable coefficients, J. Sci. Comput., 2019, 1-36 (2019) · Zbl 1418.65161
[32] Bazilevs, Y.; Hughes, TJR, Weak imposition of dirichlet boundary conditions in fluid mechanics, Comput. Fluids, 36, 1, 12-26 (2007) · Zbl 1115.76040
[33] Nitsche, J.: Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. In: Abhandlungen aus dem mathematischen Seminar der Universität Hamburg, vol. 36, Springer, pp. 9-15 (1971) · Zbl 0229.65079
[34] Kurt, Otto F., Symmetric positive linear differential equations, Commun. Pure Appl. Math., 11, 3, 333-418 (1958)
[35] Ern, A.; Guermond, J-L, Discontinuous Galerkin methods for Friedrichs’ systems. I. General theory, SIAM J. Numer. Anal., 44, 2, 753-778 (2006) · Zbl 1122.65111
[36] Nordström, J.; La Cognata, C., Energy stable boundary conditions for the nonlinear incompressible Navier-Stokes equations, Math. Comput., 88, 316, 665-690 (2019) · Zbl 1405.65107
[37] Nordström, J., Error bounded schemes for time-dependent hyperbolic problems, SIAM J. Sci. Comput., 30, 1, 46-59 (2007) · Zbl 1171.35308
[38] Abgrall, R., A general framework to construct schemes satisfying additional conservation relations. Application to entropy conservative and entropy dissipative schemes, J. Comput. Phys., 372, 640-666 (2018) · Zbl 1415.76442
[39] Gottlieb, S.; Ketcheson, DI; Shu, C-W, Strong Stability Preserving Runge-Kutta and Multistep Time discretizations (2011), Singapore: World Scientific, Singapore
[40] Balay, S., Abhyankar, S., Adams, M.F., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Dener, A., Eijkhout, V., Gropp, W. D., Karpeyev, D., Kaushik, D., Knepley, M. G., May, D. A., McInnes, L. C., Mills, R. T., Munson, T., Rupp, K., Sanan, P., Smith, B. F., Zampini, S., Zhang, H., Zhang, H.: PETSc Web page. https://www.mcs.anl.gov/petsc (2019)
[41] Satish B., Shrirang A., Mark, F.A., Jed, B., Peter, B., Kris, B., Lisandro, D., Alp, D., Victor, E., William, D.G., Dmitry, K., Dinesh, K., Matthew, G.K., Dave, A.M., McInnes, L.C., , Mills, R.T., Munson, T., Rupp, K., Sanan, P., Smith, B.F., Stefano, Z., Hong, Z., Hong, Z.: PETSc users manual. Technical Report ANL-95/11 - Revision 3.11, Argonne National Laboratory (2019)
[42] Abgrall, R., Nordström, J., Öffner, P., Tokareva, S.: Analysis of the SBP-SAT stabilization for finite element methods part II: entropy stability. In: Communications on Applied Mathematics and Computation (accepted) (2020)
[43] Abgrall, R., Meledo, E., Oeffner, P.: On the connection between residual distribution schemes and flux reconstruction. arXiv preprint arXiv:1807.01261 (2018)
[44] Abgrall, R., Öffner, P., Ranocha, H.: Reinterpretation and extension of entropy correction terms for residual distribution and discontinuous Galerkin schemes (Submitted). arXiv preprint (2019)
[45] Johnson, C.; Nävert, U.; Pitkäranta, J., Finite element methods for linear hyperbolic problems, Comput. Methods Appl. Mech. Eng., 45, 285-312 (1984) · Zbl 0526.76087
[46] Torrilhon, M., Modeling nonequilibrium gas flow based on moment equations, Annu. Rev. Fluid Mech., 48, 429-458 (2016) · Zbl 1356.76297
[47] Rana, A.; Torrilhon, M.; Struchtrup, H., A robust numerical method for the R13 equations of rarefied gas dynamics: application to lid driven cavity, J. Comput. Phys., 236, 169-186 (2013) · Zbl 1286.76130
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.