×

zbMATH — the first resource for mathematics

Solutions for the Landsberg unicorn problem in Finsler geometry. (English) Zbl 07299379
Summary: It is still a long-standing open problem in Finsler geometry, is there any regular Landsberg metric which is not Berwaldian. However, there are non-regular Landsberg metrics which are not Berwaldian. The known examples are established by G. S. Asanov and Z. Shen. In this paper, we use the Maple program to study some explicit examples of non-Berwaldian Landsberg metrics. In fact, such kinds of examples are very tedious and complicated to investigate. Nonetheless, we use the Maple program and Finsler packages to simplify calculations. Depending on these examples, we manage to figure out some geometric properties of the geodesic spray of a non-Berwaldian Landsberg metric. Deforming this spray in a very specific way, using the metrizability tools of the deformed spray, we get new (very simple) non-Berwaldian Landsberg metrics. Moreover, the power of this procedure consists in investigating a simple and useful formula for the general class obtained by Z. Shen.

MSC:
53C60 Global differential geometry of Finsler spaces and generalizations (areal metrics)
53B40 Local differential geometry of Finsler spaces and generalizations (areal metrics)
58B20 Riemannian, Finsler and other geometric structures on infinite-dimensional manifolds
68U05 Computer graphics; computational geometry (digital and algorithmic aspects)
Software:
Finsler; NF; Maple; FINSLER
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Handbook of Finsler Geometry I, II (2003), Kluwer Acad. Publ.
[2] Antonelli, P. L.; Ingarden, R.; Matsumoto, M., The Theory of Sprays and Finsler Spaces with Applications in Physics and Biology (1993), Kluwer Acad. Publ. · Zbl 0821.53001
[3] Antonelli, P. L.; Rutz, S. F.; Fonseca, K. T., The mathematical theory of endosymbiosis, II: Models of the fungal fusion hypothesis, Nonlinear Anal. RWA, 13, 2096-2103 (2012) · Zbl 1327.92034
[4] Asanov, G. S., Finsleroid-Finsler spaces of positive-definite and relativistic types, Rep. Math. Phys., 58, 275-300 (2006) · Zbl 1141.53069
[5] Bácsó, S.; Cheng, X.; Shen, Z., Curvature properties of \(( \alpha, \beta )\)-metrics, Adv. Stud. Pure Math., 48, 73-110 (2007) · Zbl 1151.53019
[6] Bao, D., On two curvature-driven problems in Riemann-Finsler geometry, Adv. Stud. Pure Math., 48, 19-71 (2007) · Zbl 1147.53018
[7] Chern, S. S.; Shen, Z., Riemann-Finsler Geometry (2004), World Sci. Publ.
[8] Crampin, M., On Landsberg spaces and the Landsberg-Berwald problem, Houst. J. Math., 37, 1103-1124 (2011) · Zbl 1239.53024
[9] Elgendi, S. G., The T-tensor of \(( \alpha , \beta )\)-metrics (2018), submitted for publication, arXiv:1806.02620 [math.DG]
[10] Elgendi, S. G., On the problem of non-Berwaldian Landsberg spaces, Bull. Aust. Math. Soc., 32, 2, 1-11 (2019)
[11] Miron, R.; Anastasiei, M., The Geometry of Lagrange Spaces: Theory and Applications (1994), Kluwer Acad. Publ. · Zbl 0831.53001
[12] Muzsnay, Z., The Euler-Lagrange PDE and Finsler metrizability, Houst. J. Math., 32, 79-98 (2006) · Zbl 1113.53049
[13] Portugal, R.; Sautu, S. L., Applications of Maple to general relativity, Comput. Phys. Comm., 105, 233-253 (1997) · Zbl 1017.83500
[14] Rutz, S. F.; Portugal, R., FINSLER: A computer algebra package for Finsler geometries, Nonlinear Anal., 47, 6121-6134 (2001) · Zbl 1042.53524
[15] Shen, Z., On a class of Landsberg metrics in Finsler geometry, Canad. J. Math., 61, 1357-1374 (2009) · Zbl 1181.53023
[16] Youssef, Nabil L.; Elgendi, S. G., Computing nullity and kernel vectors using NF-package: Counterexamples, Comput. Phys. Comm., 185, 11, 2859-2864 (2014), arXiv:1401.0133 [math. DG]. · Zbl 1348.53003
[17] Youssef, Nabil L.; Elgendi, S. G., New Finsler package, Comput. Phys. Comm., 185, 3, 986-997 (2014), arXiv:1306.0875 [math. DG]. · Zbl 1360.53006
[18] Youssef, Nabil L.; Elgendi, S. G., Nullity distributions associated with Chern connection, Publ. Math. Debrecen, 88, 235-248 (2016), arXiv:1410.0193 [math. DG] · Zbl 1389.53104
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.