zbMATH — the first resource for mathematics

Design of \(\mathcal{L}_2\) stable fixed-order decentralised controllers in a network of sampled-data systems with time-delays. (English) Zbl 1455.93006
Summary: A methodology is proposed for the design of sampled-data fixed-order decentralised controllers for multiple input multiple output (MIMO) linear time-invariant (LTI) time-delay systems. Imperfections in the communication links between continuous-time plants and controllers arising due to transmission time-delays, aperiodic sampling, and asynchronous sensors and actuators are considered. We model the errors induced due to the control imperfections using an operator approach leading to a simple \(\mathcal{L}_2\) stability criterion. A frequency domain-based direct optimisation approach towards controller design is proposed in this paper. This approach relies on the minimisation of cost functions, for stability and robustness against control imperfections, as a function of the controller or design parameters. First, the proposed method towards controller design is applied to generic MIMO LTI systems with time-delays. Second, when the delay system to be controlled has the structure of a network of coupled quasi-identical subsystems, we use a scalable algorithm to design identical decentralised controllers through network structure exploitation. Quasi-identical subsystems are identical subsystems that have non-identical uncertainties or control imperfections. By exploiting the structure, we improve the computational efficiency and scalability with the number of subsystems. The methodology has been implemented in a publicly available software, which supports system models in terms of delay differential algebraic equations. Finally, the effectiveness of the methodology is illustrated using a numerical example.
Reviewer: Reviewer (Berlin)
93A14 Decentralized systems
93C35 Multivariable systems, multidimensional control systems
93B70 Networked control
93C57 Sampled-data control/observation systems
93C43 Delay control/observation systems
93C05 Linear systems in control theory
Full Text: DOI
[1] Apkarian, P.; Noll, D., Non-smooth H-infinity synthesis, IEEE Trans. Autom. Control, 51, 71-86 (2006) · Zbl 1366.93148
[2] Apkarian, P.; Noll, D., Structured H_∞-control of infinite-dimensional systems, Int. J. Robust Nonlinear Control, 28, 3212-3238 (2018) · Zbl 1396.93049
[3] Araujo, J.; Mazo, M.; Anta, A.; Tabuada, P.; Johansson, K. H., System architectures, protocols and algorithms for aperiodic wireless control systems, IEEE Trans. Ind. Inf., 10, 175-184 (2014)
[4] Bauer, N.; Donkers, M.; van de Wouw, N.; Heemels, W., Decentralized observer-based control via networked communication, Automatica, 49, 2074-2086 (2013) · Zbl 1364.93081
[5] 5th IFAC Symposium on Robust Control Design
[6] Dileep, D.; Borgioli, F.; Hetel, L.; Richard, J. P.; Michiels, W., A scalable design method for stabilising decentralised controllers for networks of delay-coupled systems, Proceedings of the 5th IFAC Conference on Analysis and Control of Chaotic Systems, Netherlands (2018)
[7] D. Dileep, W. Michiels, TDS_HOPT-NSe-v2, a software tool for sampled data structured controller design for DDAEs with network structure exploitation, 2019, http://twr.cs.kuleuven.be/research/software/delay-control/tds_hopt-nse2.zip.
[8] Dileep, D.; Michiels, W.; Hetel, L.; Richard, J. P., Design of robust structurally constrained controllers for MIMO plants with time-delays, Proceedings of the European Control Conference (ECC), 1566-1571 (2018)
[9] Dileep, D.; Van Parys, R.; Pipeleers, G.; Hetel, L.; Richard, J. P.; Michiels, W., Design of robust decentralised controllers for MIMO plants with delays through network structure exploitation, Int. J. Control (2018)
[10] Dolk, V.; Borgers, D.; Heemels, W., Output-based and decentralized dynamic event-triggered control with guaranteed lp-gain performance and zeno-freeness, IEEE Trans. Autom. Control, 62, 34-49 (2017) · Zbl 1359.93211
[11] Donkers, M. C.F.; Heemels, W. P.M. H.; van de Wouw, N.; Hetel, L., Stability analysis of networked control systems using a switched linear systems approach, IEEE Trans. Autom. Control, 56, 2101-2115 (2011) · Zbl 1368.93465
[12] Fiacchini, M.; Morarescu, I., Stability analysis for systems with asynchronous sensors and actuators, Proceedings of the IEEE 55th Conference on Decision and Control (CDC), 3991-3996 (2016)
[13] 63-82
[14] Freris, N. M.; Graham, S. R.; Kumar, P. R., Fundamental limits on synchronizing clocks over networks, IEEE Trans. Autom. Control, 56, 1352-1364 (2011) · Zbl 1368.90021
[15] Systems Control: Foundations Applications · Zbl 1303.93005
[16] 7th IFAC Workshop on Time Delay Systems TDS 2007, Nantes, France, 17-19 September, 2007
[17] Fujioka, H.; Kao, C. Y.; Almer, S.; Jonsson, U., Sampled-data H_∞ control design for a class of PWM systems, Proceedings of the 44th IEEE Conference on Decision and Control (2005)
[18] Gumussoy, S.; Michiels, W., Fixed-order H-infinity control for interconnected systems using delay differential algebraic equations, SIAM J. Control Optim., 49, 2212-2238 (2011) · Zbl 1234.93038
[19] Heemels, W.; Teel, A.; van de Wouw, N.; Nesic, D., Networked control systems with communication constraints: Tradeoffs between transmission intervals, delays and performance, IEEE Trans. Autom. Control, 55, 1781-1796 (2010) · Zbl 1368.93627
[20] Hetel, L.; Fiter, C.; Omran, H.; Seuret, A.; Fridman, E.; Richard, J. P.; Niculescu, S. I., Recent developments on the stability of systems with aperiodic sampling: An overview, Automatica, 76, 309-335 (2017) · Zbl 1352.93073
[21] Control Engineering - Birkhäuser · Zbl 1094.93005
[22] Jiang, X.; Zhang, J.; Harding, B. J.; Makela, J. J.; Domínguez García, A. D., Spoofing GPS receiver clock offset of phasor measurement units, IEEE Transactions on Power Systems, 28, 3253-3262 (2013)
[23] Kao, C.; Cantoni, M., Robust performance analysis of aperiodic sampled-data feedback control systems, Proceedings of the 54th IEEE Conference on Decision and Control (CDC), 1421-1426 (2015)
[24] Kao, C. Y.; Lincoln, B., Simple stability criteria for systems with time-varying delays, Automatica, 40, 1429-1434 (2004) · Zbl 1073.93047
[25] Kao, C. Y.; Rantzer, A., Stability analysis of systems with uncertain time-varying delays, Automatica, 43, 959-970 (2007) · Zbl 1282.93203
[26] Lamnabhi-Lagarrigue, F.; Annaswamy, A.; Engell, S.; Isaksson, A.; Khargonekar, P.; Murray, R. M.; Nijmeijer, H.; Samad, T.; Tilbury, D.; den Hof, P. V., Systems and control for the future of humanity, research agenda: Current and future roles, impact and grand challenges, Annu. Rev. Control, 43, 1-64 (2017)
[27] Li, S. E.; Zheng, Y.; Li, K.; Wu, Y.; Hedrick, J. K.; Gao, F.; Zhang, H., Dynamical modeling and distributed control of connected and automated vehicles: Challenges and opportunities, IEEE Intell. Transp. Syst. Mag., 9, 46-58 (2017)
[28] Prentice-Hall international series in systems and control engineering · Zbl 0755.93004
[29] Manaffam, S.; Talebi, M. K.; Jain, A. K.; Behal, A., Synchronization in networks of identical systems via pinning: Application to distributed secondary control of microgrids, IEEE Trans. Control Syst. Technol., 25, 2227-2234 (2017)
[30] McMillan, G. K., Industrial Applications of PID Control (2012), Springer London: Springer London London
[31] Other Titles in Applied Mathematics
[32] Michiels, W., Spectrum-based stability analysis and stabilisation of systems described by delay differential algebraic equations, IET Control Theory Appl., 5, 1829-1842 (2011)
[33] Michiels, W.; Fridman, E.; Niculescu, S. I., Robustness assessment via stability radii in delay parameters, Int. J. Robust Nonlinear Control, 19, 1405-1426 (2009) · Zbl 1298.93266
[34] Mirkin, L., Some remarks on the use of time-varying delay to model sample-and-hold circuits, IEEE Trans. Autom. Control, 52, 1109-1112 (2007) · Zbl 1366.94798
[35] Naghshtabrizi, P.; Hespanha, J. P.; Teel, A. R., Exponential stability of impulsive systems with application to uncertain sampled-data systems, Syst. Control Lett., 57, 378-385 (2008) · Zbl 1140.93036
[36] Overton, M. L., HANSO: A Hybrid Algorithm for Non-Smooth Optimization, Computer Science, New York University (2009)
[37] Prieur, C.; Queinnec, I.; Tarbouriech, S.; Zaccarian, L., Analysis and Synthesis of Reset Control Systems (2018), Now
[38] Samad, T., IFAC Industry Committee Update, Initiative to Increase Industrial Participation in the Control Community, Newsletters April 2019 (2019), IFAC
[39] Shamma, J. S., Robust stability with time-varying structured uncertainty, IEEE Trans. Autom. Control, 39, 714-724 (1994) · Zbl 0807.93048
[40] Mathematics in Science and Engineering · Zbl 0728.93004
[41] Thomas, J.; Hetel, L.; Fiter, C.; van de Wouw, N.; Richard, J., L2-stability criterion for systems with decentralized asynchronous controllers, Proceedings of the IEEE Conference on Decision and Control (CDC), 6638-6643 (2018)
[42] Advances in Industrial Control · Zbl 1401.93006
[43] Wakaiki, M.; Okano, K.; Hespanha, J. P., Stabilization of systems with asynchronous sensors and controllers, Automatica, 81, 314-321 (2017) · Zbl 1372.93169
[44] Weitenberg, E.; Jiang, Y.; Zhao, C.; Mallada, E.; De Persis, C.; Dörfler, F., Robust decentralized secondary frequency control in power systems: Merits and tradeoffs, IEEE Trans. Autom. Control, 64, 3967-3982 (2019) · Zbl 07158475
[45] Zegers, J. C.; Semsar-Kazerooni, E.; Ploeg, J.; van de Wouw, N.; Nijmeijer, H., Consensus control for vehicular platooning with velocity constraints, IEEE Trans. Control Syst. Technol., 26, 1592-1605 (2018)
[46] Zhang, W.; Branicky, M. S.; Phillips, S. M., Stability of networked control systems, IEEE Control Syst. Mag., 21, 84-99 (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.