×

zbMATH — the first resource for mathematics

Conservative algebras and superalgebras: a survey. (English) Zbl 07300191
Summary: We give a survey of results obtained on the class of conservative algebras and superalgebras, as well as on their important subvarieties, such as terminal algebras.
MSC:
17A30 Nonassociative algebras satisfying other identities
17A70 Superalgebras
17A15 Noncommutative Jordan algebras
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] B. Allison: A class of nonassociative algebras with involution containing the class of Jordan algebras. Mathematische Annalen 237 (2) (1978) 133-156. · Zbl 0368.17001
[2] B. Allison, W. Hein: Isotopes of some nonassociative algebras with involution. Journal of Algebra 69 (1981) 120-142. · Zbl 0462.17002
[3] G. Birkho : On the structure of abstract algebras. Mathematical Proceedings of the Cambridge Philosophical Society 31 (4) (1935) 433-454.
[4] A. Calderón Martín, A. Fernández Ouaridi, I. Kaygorodov: The classification of 2-dimensional rigid algebras. Linear and Multilinear Algebra 68 (4) (2020) 828-844. · Zbl 07178187
[5] N. Cantarini, V. Kac: Classification of linearly compact simple rigid superalgebras. International Mathematics Research Notices 17 (2010) 3341-3393. · Zbl 1269.17002
[6] N. Cantarini, V. Kac: Classification of simple linearly compact n-Lie superalgebras. Communications in Mathematical Physics 298 (3) (2010) 833-853. · Zbl 1232.17008
[7] N. Cantarini, V. Kac: Classification of simple linearly compact N = 6 3-algebras. Transformation Groups 16 (3) (2011) 649-671. · Zbl 1270.17002
[8] N. Jacobson: Structure and Representations of Jordan Algebras. American Mathematical Society, Providence, R.I (1969).
[9] V. Kac: Classification of simple Z-graded Lie superalgebras and simple Jordan superalgebras. Communications in Algebra 13 (5) (1977) 1375-1400. · Zbl 0367.17007
[10] I. Kantor: Graded Lie algebras (Russian). Trudy Seminara po Vektornomu i Tenzornomu Analizu s ikh Prilozheniyami k Geometrii, Mekhanike i Fizike 15 (1970) 227-266.
[11] I. Kantor: Certain generalizations of Jordan algebras (Russian). Trudy Seminara po Vektornomu i Tenzornomu Analizu s ikh Prilozheniyami k Geometrii, Mekhanike i Fizike 16 (1972) 407-499.
[12] I. Kantor: A universal graded Lie superalgebra (Russian). Trudy Seminara po Vektornomu i Tenzornomu Analizu s ikh Prilozheniyami k Geometrii, Mekhanike i Fizike 20 (1981) 162-175.
[13] I. Kantor: On an extension of a class of Jordan algebras. Algebra and Logic 28 (2) (1989) 117-121. · Zbl 0704.17017
[14] I. Kantor: Some problems in L-functor theory (Russian). Algebra and Logic 16 (1989) 54-75.
[15] I. Kantor: Terminal trilinear operations. Algebra and Logic 28 (1) (1989) 25-40. · Zbl 0693.17003
[16] I. Kantor: An universal conservative algebra. Siberian Mathematical Journal 31 (3) (1990) 388-395. · Zbl 0711.17003
[17] I. Kaygorodov: On the Kantor product. Journal of Algebra and Its Applications 16 (5) (2017). · Zbl 1419.17002
[18] I. Kaygorodov, M. Khrypchenko, Yu. Popov: The algebraic and geometric classification of nilpotent terminal algebras. arXiv:1909.00358 (2019).
[19] I. Kaygorodov, A. Khudoyberdiyev, A. Sattarov: One generated nilpotent terminal algebras. Communications in Algebra 48 (10) (2020) 4355-4390. · Zbl 07251758
[20] I. Kaygorodov, A. Lopatin, Yu. Popov: Conservative algebras of 2-dimensional algebras. Linear Algebra and its Applications 486 (2015) 255-274. · Zbl 1321.17002
[21] I. Kaygorodov, Yu. Popov, A. Pozhidaev: The universal conservative superalgebra. Communications in Algebra 47 (10) (2019) 4064-4074. · Zbl 07089354
[22] I. Kaygorodov, Yu. Volkov: Conservative algebras of 2-dimensional algebras, II. Communications in Algebra 45 (8) (2017) 3413-3421. · Zbl 1427.17003
[23] O. Loos: Jordan Pairs, Lecture Notes in Mathematics. Springer Verlag, Berlin (1975).
[24] C. Martínez, E. Zelmanov: Representation theory for Jordan superalgebras I. Transactions of the American Mathematical Society 362 (2) (2010) 815-846. · Zbl 1220.17024
[25] K. Meyberg: Lectures on Algebras and Triple Systems. Lecture notes, University of Virginia, Charlottesville (1972).
[26] Yu. Popov: Representations of noncommutative Jordan superalgebras I. Journal of Algebra 544 (2020) 329-390. · Zbl 07128762
[27] A. Pozhidaev, I. Shestakov: Structurable superalgebras of Cartan type. Journal of Algebra 323 (2010) 3230-3251. · Zbl 1201.17013
[28] O. Smirnov: Simple and semisimple structurable algebras. Algebra and Logic 29 (5) (1990) 377-379. · Zbl 0738.17002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.