×

zbMATH — the first resource for mathematics

An adaptive Cartesian embedded boundary approach for fluid simulations of two- and three-dimensional low temperature plasma filaments in complex geometries. (English) Zbl 1452.76125
Summary: We review a scalable two- and three-dimensional computer code for low-temperature plasma simulations in multi-material complex geometries. Our approach is based on embedded boundary (EB) finite volume discretizations of the minimal fluid-plasma model on adaptive Cartesian grids, extended to also account for charging of insulating surfaces. We discuss the spatial and temporal discretization methods, and show that the resulting overall method is second order convergent, monotone, and conservative (for smooth solutions). Weak scalability with parallel efficiencies over 70% are demonstrated up to 8192 cores and more than one billion cells. We then demonstrate the use of adaptive mesh refinement in multiple two- and three-dimensional simulation examples at modest cores counts. The examples include two-dimensional simulations of surface streamers along insulators with surface roughness; fully three-dimensional simulations of filaments in experimentally realizable pin-plane geometries, and three-dimensional simulations of positive plasma discharges in multi-material complex geometries. The largest computational example uses up to 800 million mesh cells with billions of unknowns on 4096 computing cores. Our use of computer-aided design (CAD) and constructive solid geometry (CSG) combined with capabilities for parallel computing offers possibilities for performing three-dimensional transient plasma-fluid simulations, also in multi-material complex geometries at moderate pressures and comparatively large scale.
Reviewer: Reviewer (Berlin)
MSC:
76M12 Finite volume methods applied to problems in fluid mechanics
76X05 Ionized gas flow in electromagnetic fields; plasmic flow
65M50 Mesh generation, refinement, and adaptive methods for the numerical solution of initial value and initial-boundary value problems involving PDEs
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abou-Ghazala, A.; Katsuki, S.; Schoenbach, K. H.; Dobbs, F. C.; Moreira, K. R., Bacterial decontamination of water by means of pulsed-corona discharges, IEEE Trans. Plasma Sci., 30, 4, 1449-1453 (Aug. 2002)
[2] Clements, J. S.; Mizuno, A.; Finney, W. C.; Davis, R. H., Combined removal of \(SO_2, NO_x\), and fly ash from simulated flue gas using pulsed streamer corona, IEEE Trans. Ind. Appl., 25, 1, 62-69 (Jan. 1989)
[3] Clements, J. S.; Sato, M.; Davis, R. H., Preliminary investigation of prebreakdown phenomena and chemical reactions using a pulsed high-voltage discharge in water, IEEE Trans. Ind. Appl., IA-23, 2, 224-235 (Mar. 1987)
[4] Dinelli, G.; Civitano, L.; Rea, M., Industrial experiments on pulse corona simultaneous removal of \(NO_x\) and \(SO_2\) from flue gas, IEEE Trans. Ind. Appl., 26, 3, 535-541 (May 1990)
[5] Nair, S. A.; Yan, K.; Pemen, A. J.M.; Winands, G. J.J.; van Gompel, F. M.; van Leuken, H. E.M.; van Heesch, E. J.M.; Ptasinski, K. J.; Drinkenburg, A. A.H., A high-temperature pulsed corona plasma system for fuel gas cleaning, J. Electrost., 61, 2, 117-127 (Jun. 2004)
[6] Grymonpré, David R.; Sharma, Amit K.; Finney, Wright C.; Locke, Bruce R., The role of Fenton’s reaction in aqueous phase pulsed streamer corona reactors, Chem. Eng. J., 82, 1-3, 189-207 (Mar. 2001)
[7] Boeuf, J. P.; Pitchford, L. C., Electrohydrodynamic force and aerodynamic flow acceleration in surface dielectric barrier discharge, J. Appl. Phys., 97, 10, Article 103307 pp. (May 2005)
[8] Moreau, Eric, Airflow control by non-thermal plasma actuators, J. Phys. D, Appl. Phys., 40, 3, 605-636 (Feb. 2007)
[9] Soloviev, V. R.; Krivtsov, V. M., Surface barrier discharge modelling for aerodynamic applications, J. Phys. D, Appl. Phys., 42, 12, Article 125208 pp. (Jun. 2009)
[10] Ebert, U.; Montijn, C.; Briels, T. M.P.; Hundsdorfer, W.; Meulenbroek, B.; Rocco, A.; van Veldhuizen, E. M., The multiscale nature of streamers, Plasma Sources Sci. Technol., 15, 2, S118-S129 (May 2006)
[11] Bogaerts, Annemie; Neyts, Erik; Gijbels, Renaat; van der Mullen, Joost, Gas discharge plasmas and their applications, Spectrochim. Acta, Part B, At. Spectrosc., 57, 4, 609-658 (Apr. 2002)
[12] Pancheshnyi, S.; Ségur, P.; Capeillère, J.; Bourdon, A., Numerical simulation of filamentary discharges with parallel adaptive mesh refinement, J. Comput. Phys., 227, 13, 6574-6590 (Jun. 2008)
[13] Luque, A.; Ebert, U.; Hundsdorfer, W., Interaction of streamer discharges in air and other oxygen-nitrogen mixtures, Phys. Rev. Lett., 101, 7, Article 075005 pp. (Aug. 2008)
[14] Nijdam, S.; Teunissen, J.; Takahashi, E.; Ebert, U., The role of free electrons in the guiding of positive streamers, Plasma Sources Sci. Technol., 25, 4 (2016)
[15] Teunissen, Jannis; Ebert, Ute, Simulating streamer discharges in 3D with the parallel adaptive Afivo framework, J. Phys. D, Appl. Phys., 50, 47, Article 474001 pp. (Nov. 2017)
[16] Hallac, A.; Georghiou, G. E.; Metaxas, A. C., Secondary emission effects on streamer branching in transient non-uniform short-gap discharges, J. Phys. D, Appl. Phys., 36, 20, 2498-2509 (Oct. 2003)
[17] Papageorgiou, L.; Metaxas, A. C.; Georghiou, G. E., Three-dimensional numerical modelling of gas discharges at atmospheric pressure incorporating photoionization phenomena, J. Phys. D, Appl. Phys., 44, 4, Article 045203 pp. (Feb. 2011)
[18] Plewa, J-M.; Eichwald, O.; Ducasse, O.; Dessante, P.; Jacobs, C.; Renon, N.; Yousfi, M., 3D streamers simulation in a pin to plane configuration using massively parallel computing, J. Phys. D, Appl. Phys., 51, 9, Article 095206 pp. (Mar. 2018)
[19] Kolobov, V. I.; Arslanbekov, R. R., Towards adaptive kinetic-fluid simulations of weakly ionized plasmas, J. Comput. Phys., 231, 3, 839-869 (Feb. 2012)
[20] Singh, S.; Serdyuk, Y. V.; Summer, R., Streamer branching in air: physical model and simulations in fully 3D spatial domain, (2015 IEEE 11th International Conference on the Properties and Applications of Dielectric Materials. 2015 IEEE 11th International Conference on the Properties and Applications of Dielectric Materials, ICPADM (Jul. 2015)), 220-223
[21] Shi, Feng; Liu, Ningyu; Dwyer, Joseph R., Three-dimensional modeling of two interacting streamers, J. Geophys. Res., Atmos. (2017)
[22] Jadidian, Jouya; Zahn, Markus; Lavesson, Nils; Widlund, Ola; Borg, Karl, Stochastic and deterministic causes of streamer branching in liquid dielectrics, J. Appl. Phys., 114, 6, Article 063301 pp. (Aug. 2013)
[23] Jadidian, J.; Zahn, M.; Lavesson, N.; Widlund, O.; Borg, K., Effects of impulse voltage polarity, peak amplitude, and rise time on streamers initiated from a needle electrode in transformer oil, IEEE Trans. Plasma Sci., 40, 3, 909-918 (Mar. 2012)
[24] Jadidian, J.; Zahn, M.; Lavesson, N.; Widlund, O.; Borg, K., Effects of electrode size and solid barrier orientation on streamer discharge in transformer oil, J. Appl. Phys., 115, 14, Article 143304 pp. (Apr. 2014)
[25] Hwang, J. G.; Zahn, M.; Pettersson, L. A.A.; Hjortstam, O.; Liu, R., Modeling streamers in transformer oil: the transitional fast 3rd mode streamer, (2009 IEEE 9th International Conference on the Properties and Applications of Dielectric Materials (Jul. 2009)), 573-578
[26] Likhanskii, Alexandre V.; Shneider, Mikhail N.; Macheret, Sergey O.; Miles, Richard B., Modeling of dielectric barrier discharge plasma actuator in air, J. Appl. Phys., 103, 5, Article 053305 pp. (Mar. 2008)
[27] Soloviev, V. R.; Krivtsov, V. M., Mechanism of streamer stopping in a surface dielectric barrier discharge, Plasma Phys. Rep., 40, 1, 65-77 (Jan. 2014)
[28] Dubinova, A.; Trienekens, D.; Ebert, U.; Nijdam, S.; Christen, T., Pulsed positive discharges in air at moderate pressures near a dielectric rod, Plasma Sources Sci. Technol., 25, 5, Article 055021 pp. (Sep. 2016)
[29] Van Dijk, Jan; Peerenboom, Kim; Jimenez, Manuel; Mihailova, Diana; Van Der Mullen, Joost, The plasma modelling toolkit Plasimo, J. Phys. D, Appl. Phys., 42, 19, Article 194012 pp. (2009)
[30] Dubinova, Anna; Rutjes, Casper; Ebert, Ute; Buitink, Stijn; Scholten, Olaf; Ngoc Trinh, Gia Thi, Prediction of lightning inception by large ice particles and extensive air showers, Phys. Rev. Lett., 115, 1, Article 015002 pp. (Jun. 2015)
[31] Celestin, S.; Bonaventura, Z.; Guaitella, O.; Rousseau, A.; Bourdon, A., Influence of surface charges on the structure of a dielectric barrier discharge in air at atmospheric pressure: experiment and modeling, Eur. Phys. J. Appl. Phys., 47, 2, Article 22810 pp. (Aug. 2009)
[32] Jánský, Jaroslav; Tholin, Fabien; Bonaventura, Zdeněk; Bourdon, Anne, Simulation of the discharge propagation in a capillary tube in air at atmospheric pressure, J. Phys. D, Appl. Phys., 43, 39, Article 395201 pp. (Oct. 2010)
[33] Pechereau, François; Jánský, Jaroslav; Bourdon, Anne, Simulation of the reignition of a discharge behind a dielectric layer in air at atmospheric pressure, Plasma Sources Sci. Technol., 21, 5, Article 055011 pp. (Oct. 2012)
[34] Pechereau, François; Bonaventura, Zdeněk; Bourdon, Anne, Influence of surface emission processes on a fast-pulsed dielectric barrier discharge in air at atmospheric pressure, Plasma Sources Sci. Technol., 25, 4, Article 044004 pp. (Aug. 2016)
[35] Duarte, Max; Bonaventura, Zdeněk; Massot, Marc; Bourdon, Anne; Descombes, Stéphane; Dumont, Thierry, A new numerical strategy with space-time adaptivity and error control for multi-scale streamer discharge simulations, J. Comput. Phys., 231, 3, 1002-1019 (Feb. 2012)
[36] Bagheri, Behnaz; Teunissen, Jannis; Ebert, Ute; Becker, Markus M.; Chen, She; Ducasse, Olivier; Eichwald, Olivier; Loffhagen, Detlef; Luque, Alejandro; Mihailova, Diana; Plewa, Joseph-Marie; van Dijk, Jan; Yousfi, Mohammed, Comparison of six simulation codes for positive streamers in air, Plasma Sources Sci. Technol. (Aug. 2018)
[37] Colella, P.; Graves, D. T.; Ligocki, T. J.; Miller, G.; Modiano, D.; Schwartz, P. O.; Van Straalen, B.; Pilliod, J.; Trebotich, D.; Barad, M.; Keen, B.; Nonaka, A.; Shen, C., EBChombo Software Package for Cartesian Grid, Embedded Boundary Applications (2000), Lawrence Berkeley National Laboratory, Technical report
[38] Adams, M.; Colella, P.; Graves, D. T.; Johnson, J. N.; Keen, N. D.; Ligocki, T. J.; Martin, D. F.; McCorquodale, P. W.; Modiano, D.; Schwartz, P. O.; Sternberg, T. D.; Van Straalen, B., Chombo Software Package for AMR Applications - Design Document (2015), Lawrence Berkeley National Laboratory, Technical report
[39] Eichwald, O.; Ducasse, O.; Merbahi, N.; Yousfi, M.; Dubois, D., Effect of order fluid models on flue gas streamer dynamics, J. Phys. D, Appl. Phys. (2006)
[40] Dujko, S.; Markosyan, A. H.; White, R. D.; Ebert, U., High-order fluid model for streamer discharges: I. Derivation of model and transport data, J. Phys. D, Appl. Phys. (2013)
[41] Markosyan, A. H.; Dujko, S.; Ebert, U., High-order fluid model for streamer discharges: II. Numerical solution and investigation of planar fronts, J. Phys. D, Appl. Phys. (2013)
[42] Larsen, Edward W.; Thömmes, Guido; Klar, Axel; Seaïd, Mohammed; Götz, Thomas, Simplified PN approximations to the equations of radiative heat transfer and applications, J. Comput. Phys., 183, 2, 652-675 (Dec. 2002)
[43] Zhelezniak, M. B.; Mnatsakanian, A. K.; Sizykh, S. V., Photoionization of nitrogen and oxygen mixtures by radiation from a gas discharge, Teplofiz. Vys. Temp., 20, 423-428 (Nov. 1982)
[44] Ségur, P.; Bourdon, A.; Marode, E.; Bessieres, D.; Paillol, J. H., The use of an improved Eddington approximation to facilitate the calculation of photoionization in streamer discharges, Plasma Sources Sci. Technol., 15, 4, 648-660 (Nov. 2006)
[45] Bourdon, A.; Pasko, V. P.; Liu, N. Y.; Célestin, S.; Ségur, P.; Marode, E., Efficient models for photoionization produced by non-thermal gas discharges in air based on radiative transfer and the Helmholtz equations, Plasma Sources Sci. Technol., 16, 3, 656-678 (Aug. 2007)
[46] Capeillère, Julien; Ségur, Pierre; Bourdon, Anne; Célestin, Sébastien; Pancheshnyi, Sergey, The finite volume method solution of the radiative transfer equation for photon transport in non-thermal gas discharges: application to the calculation of photoionization in streamer discharges, J. Phys. D, Appl. Phys., 41, 23, Article 234018 pp. (Dec. 2008)
[47] Johansen, Hans; Colella, Phillip, A Cartesian grid embedded boundary method for Poisson’s equation on irregular domains, J. Comput. Phys., 147, 1, 60-85 (Nov. 1998)
[48] McCorquodale, Peter; Colella, Phillip; Johansen, Hans, A Cartesian grid embedded boundary method for the heat equation on irregular domains, J. Comput. Phys. (2001) · Zbl 0991.65099
[49] Schwartz, Peter; Barad, Michael; Colella, Phillip; Ligocki, Terry, A Cartesian grid embedded boundary method for the heat equation and Poisson’s equation in three dimensions, J. Comput. Phys. (2006) · Zbl 1086.65532
[50] Crockett, R. K.; Colella, P.; Graves, D. T., A Cartesian grid embedded boundary method for solving the Poisson and heat equations with discontinuous coefficients in three dimensions, J. Comput. Phys., 230, 7, 2451-2469 (Apr. 2011)
[51] Van Laer, Koen; Bogaerts, Annemie, Fluid modelling of a packed bed dielectric barrier discharge plasma reactor, Plasma Sources Sci. Technol. (2015)
[52] Twizell, E. H.; Gumel, A. B.; Arigu, M. A., Second-order,\(L_0\)-stable methods for the heat equation with time-dependent boundary conditions, Adv. Comput. Math., 6, 1, 333-352 (1996) · Zbl 0872.65084
[53] Perlin, Ken, Improving noise, (Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques. Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’02 (2002)), 681
[54] Babaeva, Natalia Yu.; Kushner, Mark J., Structure of positive streamers inside gaseous bubbles immersed in liquids, J. Phys. D, Appl. Phys., 42, 13, Article 132003 pp. (Jul. 2009)
[55] Soloviev, V.; Krivtsov, V., Positive streamer in the surface dielectric barrier discharge in air: numerical modelling and analytical estimations, J. Phys. Conf. Ser., 927, Article 012059 pp. (Nov. 2017)
[56] Hua, Weizhuo; Fukagata, Koji, Influence of grid resolution in fluid-model simulation of nanosecond dielectric barrier discharge plasma actuator, AIP Adv., 8, 4, Article 045209 pp. (Apr. 2018)
[58] Pancheshnyi, S.; Nudnova, M.; Starikovskii, A., Development of a cathode-directed streamer discharge in air at different pressures: experiment and comparison with direct numerical simulation, Phys. Rev. E, 71, 1, Article 016407 pp. (Jan. 2005)
[59] Gallimberti, I., A computer model for streamer propagation, J. Phys. D, Appl. Phys., 5, 12, 2179-2189 (1972)
[60] Allen, N. L.; Ghaffar, A., The conditions required for the propagation of a cathode-directed positive streamer in air, J. Phys. D, Appl. Phys., 28, 2, 331-337 (1995)
[61] Babaeva, Natalya Y.; Naidis, George V., Dynamics of positive and negative streamers in air in weak uniform electric fields, IEEE Trans. Plasma Sci., 25, 2, 375-379 (1997)
[62] Qin, Jianqi; Pasko, Victor P., On the propagation of streamers in electrical discharges, J. Phys. D, Appl. Phys., 47, 43 (2014)
[63] Christen, Thomas, Nonstandard high-voltage electric insulation models, (COMSOL Conference in Milan (2012)), 1-6
[64] Morrow, R.; Lowke, J. J., Streamer propagation in air, J. Phys. D, Appl. Phys., 30, 4, 614-627 (Feb. 1997)
[65] Hagelaar, G. J.M.; de Hoog, F. J.; Kroesen, G. M.W., Boundary conditions in fluid models of gas discharges, Phys. Rev. E, 62, 1, 1452-1454 (Jul. 2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.