zbMATH — the first resource for mathematics

BiLQ: an iterative method for nonsymmetric linear systems with a quasi-minimum error property. (English) Zbl 1458.65032
65F10 Iterative numerical methods for linear systems
65F25 Orthogonalization in numerical linear algebra
65F50 Computational methods for sparse matrices
Full Text: DOI
[1] W. E. Arnoldi, The principle of minimized iterations in the solution of the matrix eigenvalue problem, Q. Appl. Math., 9 (1951), pp. 17-29, https://doi.org/10.1090/qam/42792. · Zbl 0042.12801
[2] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, Julia: A fresh approach to numerical computing, SIAM Rev., 59 (2017), pp. 65-98, https://doi.org/10.1137/141000671. · Zbl 1356.68030
[3] A. Buttari, D. Orban, D. Ruiz, and D. Titley-Peloquin, USYMLQR: A tridiagonalization method for symmetric saddle-point systems, SIAM J. Sci. Comput., 41 (2019), pp. 409-432, https://doi.org/10.1137/18M1194900. · Zbl 1436.65029
[4] T. T. Chisholm and D. W. Zingg, A Jacobian-free Newton-Krylov algorithm for compressible turbulent fluid flows, J. Comput. Phys., 228 (2009), pp. 3490-3507, https://doi.org/10.1016/j.jcp.2009.02.004. · Zbl 1319.76033
[5] S.-C. Choi, C. C. Paige, and M. A. Saunders, MINRES-QLP: A Krylov subspace method for indefinite or singular symmetric systems, SIAM J. Sci. Comput., 33 (2011), pp. 1810-1836, https://doi.org/10.1137/100787921. · Zbl 1230.65050
[6] T. Davis and Y. Hu, The University of Florida sparse matrix collection, ACM Trans. Math. Software, 38 (2011), pp. 1-25, https://doi.org/10.1145/2049662.2049663. · Zbl 1365.65123
[7] T. A. Davis and E. P. Natarajan, Sparse matrix methods for circuit simulation problems, in Scientific Computing in Electrical Engineering SCEE 2010, Springer, New York, 2012, pp. 3-14, https://doi.org/10.1007/978-3-642-22453-9_1. · Zbl 1247.65107
[8] R. Estrin, D. Orban, and M. A. Saunders, Euclidean-norm error bounds for SYMMLQ and CG, SIAM J. Matrix Anal. Appl., 40 (2019a), pp. 235-253, https://doi.org/10.1137/16M1094816. · Zbl 1409.65015
[9] R. Estrin, D. Orban, and M. A. Saunders, LNLQ: An iterative method for least-norm problems with an error minimization property, SIAM J. Matrix Anal. Appl., 40 (2019b), pp. 1102-1124, https://doi.org/10.1137/18M1194948. · Zbl 1435.65050
[10] R. Estrin, D. Orban, and M. A. Saunders, LSLQ: An iterative method for least-squares with an error minimization property, SIAM J. Matrix Anal. Appl., 40 (2019c), pp. 254-275, https://doi.org/10.1137/17M1113552. · Zbl 1451.65028
[11] R. Fletcher, Conjugate gradient methods for indefinite systems, in Numerical Analysis, Springer, New York, 1976, pp. 73-89, https://doi.org/10.1007/BFb0080116. · Zbl 0326.65033
[12] R. W. Freund and N. M. Nachtigal, QMR: A quasi-minimal residual method for non-Hermitian linear systems, Numer. Math., 60 (1991), pp. 315-339, https://doi.org/10.1007/BF01385726. · Zbl 0754.65034
[13] G. H. Golub and W. Kahan, Calculating the singular values and pseudo-inverse of a matrix, SIAM J. Numer. Anal., 2 (1965), pp. 205-224, https://doi.org/10.1137/0702016. · Zbl 0194.18201
[14] G. H. Golub, M. Stoll, and A. Wathen, Approximation of the scattering amplitude and linear systems, ETNA, 31 (2008), pp. 178-203. · Zbl 1188.65032
[15] R. Herzog and K. Soodhalter, A modified implementation of MINRES to monitor residual subvector norms for block systems, SIAM J. Sci. Comput., 39 (2017), pp. A2645-A2663, https://doi.org/10.1137/16M1093021. · Zbl 1378.65083
[16] M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems, J. Res. Natl. Bur. Stand., 49 (1952), pp. 409-436, https://doi.org/10.6028/jres.049.044. · Zbl 0048.09901
[17] M. Lai, A note on finite difference discretizations for Poisson equation on a disk, Numer. Methods Partial Differential Equations, 17 (2001), pp. 199-203, https://doi.org/10.1002/num.1. · Zbl 0984.65106
[18] C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear differential and integral operators, J. Res. Natl. Bur. Stand., 45 (1950), pp. 225-280, https://doi.org/10.6028/jres.045.026.
[19] J. Lu and D. Darmofal, A quasi-minimal residual method for simultaneous primal-dual solutions and superconvergent functional estimates, SIAM J. Sci. Comput., 24 (2003), pp. 1693-1709, https://doi.org/10.1137/S1064827501390625. · Zbl 1034.65019
[20] C. C. Paige, I. Panayotov, and J.-P. M. Zemke, An augmented analysis of the perturbed two-sided Lanczos tridiagonalization process, Linear Algebra Appl., 447 (2014), pp. 119-132, https://doi.org/10.1016/j.laa.2013.05.009. · Zbl 1291.65130
[21] C. C. Paige and M. A. Saunders, Solution of sparse indefinite systems of linear equations, SIAM J. Numer. Anal., 12 (1975), pp. 617-629, https://doi.org/10.1137/0712047. · Zbl 0319.65025
[22] B. N. Parlett, D. R. Taylor, and Z. A. Liu, A look-ahead Lanczos algorithm for unsymmetric matrices, Math. Comp., 44 (1985), pp. 105-124, https://doi.org/10.2307/2007796. · Zbl 0564.65022
[23] N. A. Pierce and M. B. Giles, Adjoint recovery of superconvergent functionals from PDE approximations, SIAM Rev., 42 (2000), pp. 247-264, https://doi.org/10.1137/S0036144598349423. · Zbl 0948.65119
[24] L. Reichel and Q. Ye, A generalized LSQR algorithm, Numer. Linear Algebra Appl., 15 (2008), pp. 643-660, https://doi.org/10.1002/nla.611. · Zbl 1212.65170
[25] M. A. Saunders, H. D. Simon, and E. L. Yip, Two conjugate-gradient-type methods for unsymmetric linear equations, SIAM J. Numer. Anal., 25 (1988), pp. 927-940, https://doi.org/10.1137/0725052. · Zbl 0652.65022
[26] P. Sonneveld, CGS, a fast Lanczos-type solver for nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 10 (1989), pp. 36-52, https://doi.org/10.1137/0910004. · Zbl 0666.65029
[27] H. A. van der Vorst, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 13 (1992), pp. 631-644, https://doi.org/10.1137/0913035. · Zbl 0761.65023
[28] R. Weiss, Error-minimizing Krylov subspace methods, SIAM J. Sci. Comput., 15 (1994), pp. 511-527, https://doi.org/10.1137/0915034. · Zbl 0798.65048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.