zbMATH — the first resource for mathematics

A holistic algorithmic approach to improving accuracy, robustness, and computational efficiency for atmospheric dynamics. (English) Zbl 1459.35356
35Q86 PDEs in connection with geophysics
86A10 Meteorology and atmospheric physics
86A08 Climate science and climate modeling
86-08 Computational methods for problems pertaining to geophysics
35Q30 Navier-Stokes equations
68W10 Parallel algorithms in computer science
65Y20 Complexity and performance of numerical algorithms
65Y10 Numerical algorithms for specific classes of architectures
DiffSharp; E3SM; FFADlib
Full Text: DOI
[1] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind, Automatic differentiation in machine learning: A survey, J. Mach. Learn. Res., 18 (2018), 153. · Zbl 06982909
[2] Y. Chen, H. Weller, S. Pring, and J. Shaw, Comparison of dimensionally split and multi-dimensional atmospheric transport schemes for long time steps, Q. J. R. Meteorol. Soc., 143 (2017), pp. 2764-2779.
[3] R. Courant, K. Friedrichs, and H. Lewy, On the partial difference equations of mathematical physics, IBM J. Res. Develop., 11 (1967), pp. 215-234. · Zbl 0145.40402
[4] S. J. Day, N. Mullineux, and J. Reed, Developments in obtaining transient response using Fourier transforms: Part I: Gibbs phenomena and Fourier integrals, Int. J. Elect. Engng. Educ., 3 (1965), pp. 501-506.
[5] J. M. Dennis, J. Edwards, K. J. Evans, O. Guba, P. H. Lauritzen, A. A. Mirin, A. St-Cyr, M. A. Taylor, and P. H. Worley, CAM-SE: A scalable spectral element dynamical core for the Community Atmosphere Model, Int. J. High. Perform. Comput. Appl., 26 (2012), pp. 74-89.
[6] A. Ditkowski, S. Gottlieb, and Z. Grant, Explicit and implicit error inhibiting schemes with post-processing, Comput. & Fluids, 208 (2020), 104534.
[7] E3SM Project, Energy Exascale Earth System Model (E3SM), [Computer Software], April 2018, https://doi.org/10.11578/E3SM/dc.20180418.36.
[8] M. Emmett and M. Minion, Toward an efficient parallel in time method for partial differential equations, Commun. Appl. Math. Comput. Sci., 7 (2012), pp. 105-132. · Zbl 1248.65106
[9] K. J. Evans, R. K. Archibald, D. J. Gardner, M. R. Norman, M. A. Taylor, C. S. Woodward, and P. H. Worley, Performance analysis of fully explicit and fully implicit solvers within a spectral element shallow-water atmosphere model, Int. J. High. Perform. Comput. Appl., 33 (2019), pp. 268-284.
[10] A. Fournier, M. A. Taylor, and J. J. Tribbia, The spectral element atmosphere model (SEAM): High-resolution parallel computation and localized resolution of regional dynamics, Mon. Weather Rev., 132 (2004), pp. 726-748.
[11] F. X. Giraldo and M. Restelli, A study of spectral element and discontinuous Galerkin methods for the Navier-Stokes equations in nonhydrostatic mesoscale atmospheric modeling: Equation sets and test cases, J. Comput. Phys., 227 (2008), pp. 3849-3877. · Zbl 1194.76189
[12] S. Gottlieb, On high order strong stability preserving Runge-Kutta and multi step time discretizations, J. Sci. Comput., 25 (2005), pp. 105-128. · Zbl 1203.65166
[13] S. Gottlieb and C.-W. Shu, Total variation diminishing Runge-Kutta schemes, Math. Comp., 67 (1998), pp. 73-85. · Zbl 0897.65058
[14] O. Guba, M. Taylor, and A. St-Cyr, Optimization-based limiters for the spectral element method, J. Comput. Phys., 267 (2014), pp. 176-195. · Zbl 1349.65516
[15] C. Hu and C.-W. Shu, Weighted essentially non-oscillatory schemes on triangular meshes, J. Comput. Phys., 150 (1999), pp. 97-127. · Zbl 0926.65090
[16] K. K. Katta, R. D. Nair, and V. Kumar, High-order finite-volume transport on the cubed sphere: Comparison between 1D and 2D reconstruction schemes, Mon. Weather Rev., 143 (2015), pp. 2937-2954.
[17] P. Lauritzen, W. Skamarock, M. Prather, and M. Taylor, A standard test case suite for two-dimensional linear transport on the sphere, Geosci. Model Dev., 5 (2012), pp. 887-901.
[18] R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge Texts Appl. Math., Cambridge University Press, 2002. · Zbl 1010.65040
[19] F. Li, W. D. Collins, M. F. Wehner, D. L. Williamson, J. G. Olson, and C. Algieri, Impact of horizontal resolution on simulation of precipitation extremes in an aqua-planet version of Community Atmospheric Model (CAM3), Tellus A, 63 (2011), pp. 884-892.
[20] X.-D. Liu, S. Osher, and T. Chan, Weighted essentially non-oscillatory schemes, J. Comput. Phys., 115 (1994), pp. 200-212. · Zbl 0811.65076
[21] E. H. Müller and R. Scheichl, Massively parallel solvers for elliptic partial differential equations in numerical weather and climate prediction, Q. J. R. Meteorol. Soc., 140 (2014), pp. 2608-2624.
[22] R. Nair, H.-W. Choi, and H. Tufo, Computational aspects of a scalable high-order discontinuous galerkin atmospheric dynamical core, Comput. & Fluids, 38 (2009), pp. 309-319. · Zbl 1237.76129
[23] M. R. Norman and R. D. Nair, A positive-definite, WENO-limited, high-order finite volume solver for 2-D transport on the cubed sphere using an ADER time discretization, J. Adv. Model. Earth Syst., 10 (2018), pp. 1587-1612.
[24] K. G. Pressel, S. Mishra, T. Schneider, C. M. Kaul, and Z. Tan, Numerics and subgrid-scale modeling in large eddy simulations of stratocumulus clouds, J. Adv. Model. Earth Syst., 9 (2017), pp. 1342-1365.
[25] W. Putman and S.-J. Lin, A finite-volume dynamical core on the cubed-sphere grid, in Numerical Modeling of Space Plasma Flows: Astronum-2008, ASP Conference Series, Vol. 406, 2009, pp. 268-276.
[26] A. Robert, T. L. Yee, and H. Ritchie, A semi-Lagrangian and semi-implicit numerical integration scheme for multilevel atmospheric models, Mon. Weather Rev., 113 (1985), pp. 388-394.
[27] A. J. Robert, The integration of a low order spectral form of the primitive meteorological equations, J. Meteor. Soc. Japan., 44 (1966), pp. 237-245.
[28] C. Ronchi, R. Iacono, and P. S. Paolucci, The “cubed sphere”: A new method for the solution of partial differential equations in spherical geometry, J. Comput. Phys., 124 (1996), pp. 93-114. · Zbl 0849.76049
[29] W. C. Skamarock, Evaluating mesoscale NWP models using kinetic energy spectra, Mon. Weather Rev., 132 (2004), pp. 3019-3032.
[30] W. C. Skamarock and J. B. Klemp, A time-split nonhydrostatic atmospheric model for weather research and forecasting applications, J. Comput. Phys., 227 (2008), pp. 3465-3485. · Zbl 1132.86312
[31] E. F. Toro and V. A. Titarev, Derivative Riemann solvers for systems of conservation laws and ADER methods, J. Comput. Phys., 212 (2006), pp. 150-165. · Zbl 1087.65590
[32] I. Tsukanov and M. Hall, Fast Forward Automatic Differentiation Library (FFADLib): A User Manual, Spatial Automation Laboratory, Technical report SAL 2000-4, University of Wisconsin-Madison, 2000.
[33] C. Yang, T. Kurth, and S. Williams, Hierarchical Roofline analysis for GPUs: Accelerating performance optimization for the NERSC-\textup9 Perlmutter system, Concurr. Comput., 32 (2020), e5547, https://doi.org/10.1002/cpe.5547.
[34] S. T. Zalesak, Fully multidimensional flux-corrected transport algorithms for fluids, J. Comput. Phys., 31 (1979), pp. 335-362. · Zbl 0416.76002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.