×

zbMATH — the first resource for mathematics

Physics-informed cokriging: a Gaussian-process-regression-based multifidelity method for data-model convergence. (English) Zbl 1453.62651
Summary: In this work, we propose a new Gaussian process regression (GPR)-based multifidelity method: physics-informed CoKriging (CoPhIK). In CoKriging-based multifidelity methods, the quantities of interest are modeled as linear combinations of multiple parameterized stationary Gaussian processes (GPs), and the hyperparameters of these GPs are estimated from data via optimization. In CoPhIK, we construct a GP representing low-fidelity data using physics-informed Kriging (PhIK), and model the discrepancy between low- and high-fidelity data using a parameterized GP with hyperparameters identified via optimization. We prove that the physical constraints in the form of deterministic linear operators are satisfied up to an error bound. Furthermore, we combine CoPhIK with a greedy active learning algorithm for guiding the selection of additional observation locations. The efficiency and accuracy of CoPhIK are demonstrated for reconstructing the partially observed modified Branin function, reconstructing the sparsely observed state of a steady state heat transport problem, and learning a conservative tracer distribution from sparse tracer concentration measurements.
MSC:
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
Software:
EGO; EnKF; eSTOMP; GSLIB
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Armstrong, Margaret, Problems with universal kriging, J. Int. Assoc. Math. Geol., 16, 1, 101-108 (1984)
[2] Barajas-Solano, David A.; Tartakovsky, Alexandre M., Multivariate gaussian process regression for multiscale data assimilation and uncertainty reduction (2018), arXiv preprint · Zbl 1390.60225
[3] Barajas-Solano, David A.; Tartakovsky, Alexandre M., Probability and cumulative density function methods for the stochastic advection-reaction equation, SIAM/ASA J. Uncertain. Quantificat., 6, 1, 180-212 (2018) · Zbl 1390.60225
[4] Brahim-Belhouari, Sofiane; Bermak, Amine, Gaussian process for nonstationary time series prediction, Comput. Stat. Data Anal., 47, 4, 705-712 (2004) · Zbl 1429.62420
[5] Brooks, Christopher James; Forrester, A. I.J.; Keane, A. J.; Shahpar, S., Multi-Fidelity Design Optimisation of a Transonic Compressor Rotor (2011)
[6] Chkrebtii, Oksana A.; Campbell, David A.; Calderhead, Ben; Girolami, Mark A., Bayesian solution uncertainty quantification for differential equations, Bayesian Anal., 11, 4, 1239-1267 (2016) · Zbl 1357.62108
[7] Cockayne, Jon; Oates, Chris; Sullivan, Tim; Girolami, Mark, Bayesian probabilistic numerical methods (2017), arXiv preprint
[8] Cohn, David A.; Ghahramani, Zoubin; Jordan, Michael I., Active learning with statistical models, J. Artif. Intell. Res., 4, 129-145 (1996) · Zbl 0900.68366
[9] Collet, Timothé; Pietquin, Olivier, Optimism in active learning with Gaussian processes, (International Conference on Neural Information Processing (2015), Springer), 152-160
[10] Dai, Heng; Chen, Xingyuan; Ye, Ming; Song, Xuehang; Zachara, John M., A geostatistics-informed hierarchical sensitivity analysis method for complex groundwater flow and transport modeling, Water Resour. Res., 53, 5, 4327-4343 (2017)
[11] Deutsch, Clayton V.; Journel, André G., GSLIB: Geostatistical Software Library and User’s Guide (1992), Oxford University Press
[12] Emmanuel, Simon; Berkowitz, Brian, Mixing-induced precipitation and porosity evolution in porous media, Adv. Water Resour., 28, 4, 337-344 (2005)
[13] Evensen, Geir, The ensemble Kalman filter: theoretical formulation and practical implementation, Ocean Dyn., 53, 4, 343-367 (2003)
[14] Forrester, Alexander; Keane, Andy, Engineering Design via Surrogate Modelling: A Practical Guide (2008), John Wiley & Sons
[15] Forrester, Alexander I. J.; Sóbester, András; Keane, Andy J., Multi-Fidelity Optimization via Surrogate Modelling, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 463, 3251-3269 (2007), The Royal Society · Zbl 1142.90489
[16] Garnett, Roman; Osborne, Michael A.; Roberts, Stephen J., Bayesian optimization for sensor set selection, (Proceedings of the 9th ACM/IEEE International Conference on Information Processing in Sensor Networks (2010), ACM), 209-219
[17] Giles, Michael B., Multilevel Monte Carlo path simulation, Oper. Res., 56, 3, 607-617 (2008) · Zbl 1167.65316
[18] Girolami, Mark; Zhong, Mingjun, Data integration for classification problems employing gaussian process priors, (Advances in Neural Information Processing Systems (2007)), 465-472
[19] Hennig, Philipp; Osborne, Michael A.; Girolami, Mark, Probabilistic numerics and uncertainty in computations, Proc. R. Soc. Lond. A, 471, 2179, Article 20150142 pp. (2015) · Zbl 1372.65010
[20] Jones, Donald R.; Schonlau, Matthias; Welch, William J., Efficient global optimization of expensive black-box functions, J. Glob. Optim., 13, 4, 455-492 (1998) · Zbl 0917.90270
[21] Kennedy, Marc C.; O’Hagan, Anthony, Predicting the output from a complex computer code when fast approximations are available, Biometrika, 87, 1, 1-13 (2000) · Zbl 0974.62024
[22] Kitanidis, Peter K., Introduction to Geostatistics: Applications in Hydrogeology (1997), Cambridge University Press
[23] Knotters, M.; Brus, D. J.; Oude Voshaar, J. H., A comparison of kriging, co-kriging and kriging combined with regression for spatial interpolation of horizon depth with censored observations, Geoderma, 67, 3-4, 227-246 (1995)
[24] Krause, Andreas; Singh, Ajit; Guestrin, Carlos, Near-optimal sensor placements in Gaussian processes: theory, efficient algorithms and empirical studies, J. Mach. Learn. Res., 9, 235-284 (Feb. 2008)
[25] Laurenceau, Julien; Sagaut, P., Building efficient response surfaces of aerodynamic functions with kriging and cokriging, AIAA J., 46, 2, 498-507 (2008)
[26] Le Gratiet, Loic; Garnier, Josselin, Recursive co-kriging model for design of computer experiments with multiple levels of fidelity, Int. J. Uncertain. Quantificat., 4, 5 (2014) · Zbl 1311.62058
[27] Lin, Guang; Tartakovsky, Alexandre M., An efficient, high-order probabilistic collocation method on sparse grids for three-dimensional flow and solute transport in randomly heterogeneous porous media, Adv. Water Resour., 32, 5, 712-722 (2009)
[28] MacKay, David J. C., Introduction to Gaussian Processes, NATO ASI Series F Computer and Systems Sciences, vol. 168, 133-166 (1998) · Zbl 0936.68081
[29] Monterrubio-Gómez, Karla; Roininen, Lassi; Wade, Sara; Damoulas, Theo; Girolami, Mark, Posterior inference for sparse hierarchical non-stationary models (2018), arXiv preprint
[30] Neal, Radford M., Bayesian Learning for Neural Networks, vol. 118 (2012), Springer Science & Business Media
[31] Niederreiter, Harald, Random Number Generation and Quasi-Monte Carlo Methods, vol. 63 (1992), SIAM · Zbl 0761.65002
[32] O’Hagan, Anthony, A Markov Property for Covariance Structures (1998) · Zbl 0972.62017
[33] Paciorek, Christopher J.; Schervish, Mark J., Nonstationary covariance functions for Gaussian process regression, (Advances in Neural Information Processing Systems (2004)), 273-280
[34] Pan, Wenxiao; Yang, Xiu; Bao, Jie; Wang, Michelle, Optimizing discharge capacity of li-o2 batteries by design of air-electrode porous structure: multifidelity modeling and optimization, J. Electrochem. Soc., 164, 11, E3499-E3511 (2017)
[35] Pang, Guofei; Yang, Liu; Karniadakis, George Em, Neural-net-induced Gaussian process regression for function approximation and PDE solution (2018), arXiv preprint
[36] Perdikaris, P.; Venturi, D.; Royset, J. O.; Karniadakis, G. E., Multi-fidelity modelling via recursive co-kriging and Gaussian-Markov random fields, Proc. R. Soc. A, 471, 2179, Article 20150018 pp. (2015)
[37] Perdikaris, Paris; Raissi, Maziar; Damianou, Andreas; Lawrence, N. D.; Karniadakis, George Em, Nonlinear information fusion algorithms for data-efficient multi-fidelity modelling, Proc. R. Soc. Lond. A, 473, 2198, Article 20160751 pp. (2017) · Zbl 1407.62252
[38] Plagemann, Christian; Kersting, Kristian; Burgard, Wolfram, Nonstationary gaussian process regression using point estimates of local smoothness, (Joint European Conference on Machine Learning and Knowledge Discovery in Databases (2008), Springer), 204-219
[39] Raissi, Maziar; Perdikaris, Paris; Karniadakis, George Em, Machine learning of linear differential equations using Gaussian processes, J. Comput. Phys., 348, 683-693 (2017) · Zbl 1380.68339
[40] Raissi, Maziar; Perdikaris, Paris; Karniadakis, George Em, Numerical Gaussian processes for time-dependent and nonlinear partial differential equations, SIAM J. Sci. Comput., 40, 1, A172-A198 (2018) · Zbl 1386.65030
[41] Sacks, Jerome; Welch, William J.; Mitchell, Toby J.; Wynn, Henry P., Design and analysis of computer experiments, Stat. Sci., 409-423 (1989) · Zbl 0955.62619
[42] Sampson, Paul D.; Guttorp, Peter, Nonparametric estimation of nonstationary spatial covariance structure, J. Am. Stat. Assoc., 87, 417, 108-119 (1992)
[43] Schober, Michael; Duvenaud, David K.; Hennig, Philipp, Probabilistic ODE solvers with Runge-Kutta means, (Advances in Neural Information Processing Systems (2014)), 739-747
[44] Stein, A.; Corsten, L. C.A., Universal kriging and cokriging as a regression procedure, Biometrics, 575-587 (1991)
[45] Stein, Michael L., Interpolation of Spatial Data: Some Theory for Kriging (2012), Springer Science & Business Media
[46] Tartakovsky, A. M.; Panzeri, M.; Tartakovsky, G. D.; Guadagnini, A., Uncertainty quantification in scale-dependent models of flow in porous media, Water Resour. Res., 53, 9392-9401 (2017)
[47] Tong, Simon; Koller, Daphne, Support vector machine active learning with applications to text classification, J. Mach. Learn. Res., 2, 45-66 (Nov. 2001)
[48] White, Mark D.; Oostrom, Martinus, STOMP subsurface transport over multiple phases, version 4.0, user’s guide (2006), Richland, WA, Technical report, PNNL-15782
[49] Williams, Christopher K. I.; Rasmussen, Carl Edward, Gaussian processes for machine learning, MIT Press, 2, 3, 4 (2006) · Zbl 1177.68165
[50] Xiu, Dongbin; Hesthaven, Jan S., High-order collocation methods for differential equations with random inputs, SIAM J. Sci. Comput., 27, 3, 1118-1139 (2005) · Zbl 1091.65006
[51] Yang, Xiu; Choi, Minseok; Lin, Guang; Karniadakis, George Em, Adaptive ANOVA decomposition of stochastic incompressible and compressible flows, J. Comput. Phys., 231, 4, 1587-1614 (2012) · Zbl 1408.76428
[52] Yang, Xiu; Karniadakis, George Em, Reweighted \(\ell_1\) minimization method for stochastic elliptic differential equations, J. Comput. Phys., 248, 1, 87-108 (2013) · Zbl 1349.60113
[53] Yang, Xiu; Tartakovsky, Guzel; Tartakovsky, Alexandre, PhIK: a physics informed Gaussian process regression method for data-model convergence (2018), arXiv preprint
[54] Yang, Xiu; Zhu, Xueyu; Li, Jing, When bifidelity meets cokriging: an efficient physics-informed multifidelity method (2018), arXiv preprint
[55] Zhu, Xueyu; Linebarger, Erin M.; Xiu, Dongbin, Multi-fidelity stochastic collocation method for computation of statistical moments, J. Comput. Phys., 341, 386-396 (2017) · Zbl 1378.65040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.