A block preconditioner for non-isothermal flow in porous media. (English) Zbl 1452.65053

Summary: In petroleum reservoir simulation, the industry standard preconditioner, the Constrained Pressure Residual method (CPR), is a two-stage process which involves solving a restricted pressure system with Algebraic Multigrid (AMG). Initially designed for isothermal models, this approach is often used in the thermal case. However, it does not have a specific treatment of the additional energy conservation equation and temperature variable. We seek to develop preconditioners which better capture thermal effects such as heat diffusion. In order to study the effects of both pressure and temperature on fluid and heat flow, we consider a model of non-isothermal single phase flow through porous media. For this model, we develop a block preconditioner with an efficient Schur complement approximation. Both the pressure block and the approximate Schur complement are approximately inverted using an AMG V-cycle. The resulting solver is scalable with respect to problem size and parallelization.


65F08 Preconditioners for iterative methods
65Z05 Applications to the sciences
76S05 Flows in porous media; filtration; seepage
76M10 Finite element methods applied to problems in fluid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI arXiv


[1] Wallis, J. R., Incomplete Gaussian elimination as a preconditioning for generalized conjugate gradient acceleration, (SPE Reservoir Simulation Symposium (1983), Society of Petroleum Engineers)
[2] Wallis, J. R.; Kendall, R. P.; Little, T. E., Constrained residual acceleration of conjugate residual methods, (SPE Reservoir Simulation Symposium (1985), Society of Petroleum Engineers)
[3] Lacroix, S.; Vassilevski, Y. V.; Wheeler, J.; Wheeler, M. F., Iterative solution methods for modeling multiphase flow in porous media fully implicitly, SIAM J. Sci. Comput., 25, 3, 905-926 (2003) · Zbl 1163.65310
[4] Ruge, J.; Stüben, K., Algebraic multigrid, (Multigrid Methods. Multigrid Methods, Frontiers in Applied Mathematics, vol. 3 (1987), SIAM: SIAM Philadelphia), 73-130, Ch. 4
[5] Clees, T., AMG Strategies for PDE Systems with Applications in Industrial Semiconductor Simulation (2005), Universität zu Köln, Ph.D. Thesis
[6] Clees, T.; Ganzer, L., An efficient algebraic multigrid solver strategy for adaptive implicit methods in oil-reservoir simulation, SPE J., 15, 03, 670-681 (2010)
[7] Gries, S.; Stüben, K.; Brown, G. L.; Chen, D.; Collins, D. A., Preconditioning for efficiently applying algebraic multigrid in fully implicit reservoir simulations, SPE J., 19, 04, 726-736 (2014)
[8] Henson, V.; Yang, U., BoomerAMG: a parallel algebraic multigrid solver and preconditioner, Appl. Numer. Math., 41, 1, 155-177 (2002) · Zbl 0995.65128
[9] Falgout, R. D.; Yang, U. M., hypre: a library of high performance preconditioners, (International Conference on Computational Science (2002), Springer), 632-641 · Zbl 1056.65046
[10] Gee, M.; Siefert, C.; Hu, J.; Tuminaro, R.; Sala, M., ML 5.0 Smoothed Aggregation User’s Guide (2006), Sandia National Laboratories, Tech. Rep. SAND2006-2649
[11] Bui, Q. M.; Elman, H. C.; Moulton, J. D., Algebraic multigrid preconditioners for multiphase flow in porous media, SIAM J. Sci. Comput., 39, 5, S662-S680 (2017) · Zbl 1392.65024
[12] Wang, L.; Osei-Kuffuor, D.; Falgout, R.; Mishev, I.; Li, J., Multigrid reduction for coupled flow problems with application to reservoir simulation, (SPE Reservoir Simulation Conference (2017), Society of Petroleum Engineers)
[13] Bui, Q. M.; Wang, L.; Osei-Kuffuor, D., Algebraic multigrid preconditioners for two-phase flow in porous media with phase transitions, Adv. Water Resour., 114, 19-28 (2018)
[14] Li, G.; Wallis, J., Enhanced constrained pressure residual ECPR preconditioning for solving difficult large scale thermal models, (SPE Reservoir Simulation Conference (2017), Society of Petroleum Engineers)
[15] Booth, R., Miscible Flow Through Porous Media (2008), University of Oxford, D. Phil. Thesis
[16] Darcy, H., Les fontaines publiques de la ville de Dijon (1856), Victor Dalmont
[17] DeBaun, D.; Byer, T.; Childs, P.; Chen, J.; Saaf, F.; Wells, M.; Liu, J.; Cao, H.; Pianelo, L.; Tilakraj, V., An extensible architecture for next generation scalable parallel reservoir simulation, (SPE Reservoir Simulation Symposium (2005))
[18] Bennison, T., Prediction of heavy oil viscosity, (Presented at the IBC Heavy Oil Field Development Conference, vol. 2 (1998)), 4
[19] Peaceman, D. W., Interpretation of well-block pressures in numerical reservoir simulation (includes associated paper 6988), Soc. Pet. Eng. J., 18, 03, 183-194 (1978)
[20] Chen, Z.; Zhang, Y., Well flow models for various numerical methods, International Journal of Numerical Analysis & Modeling, 6, 3 (2009) · Zbl 1158.76393
[21] Sahni, A.; Kumar, M.; Knapp, R. B., Electromagnetic heating methods for heavy oil reservoirs, (SPE/AAPG Western Regional Meeting (2000), Society of Petroleum Engineers)
[22] LeVeque, R. J., Finite Volume Methods for Hyperbolic Problems, vol. 31 (2002), Cambridge University Press
[23] Riviere, B., Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation (2008), SIAM · Zbl 1153.65112
[24] Riseth, A. N., Nonlinear Solver Techniques in Reservoir Simulation (2015), Oxford University Mathematical Institute, Tech. Rep.
[25] Rathgeber, F.; Ham, D. A.; Mitchell, L.; Lange, M.; Luporini, F.; McRae, A. T.T.; Bercea, G.-T.; Markall, G. R.; Kelly, P. H.J., Firedrake: automating the finite element method by composing abstractions, ACM Trans. Math. Softw., 43, 3, 24 (2016) · Zbl 1396.65144
[26] Eymard, R.; Gallouët, T.; Herbin, R., Finite volume methods, Handb. Numer. Anal., 7, 713-1018 (2000) · Zbl 0981.65095
[27] Godunov, S. K., A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics, Mat. Sb., 89, 3, 271-306 (1959) · Zbl 0171.46204
[28] Saad, Y., Iterative Methods for Sparse Linear Systems (2003), SIAM · Zbl 1002.65042
[29] Saad, Y.; Schultz, M. H., GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7, 3, 856-869 (1986) · Zbl 0599.65018
[30] Meijerink, J.; van der Vorst, H. A., An iterative solution method for linear systems of which the coefficient matrix is a symmetric M-matrix, Math. Comput., 31, 137, 148-162 (1977) · Zbl 0349.65020
[31] Brandt, A., Multi-level adaptive solutions to boundary-value problems, Math. Comput., 31, 138, 333-390 (1977) · Zbl 0373.65054
[32] Briggs, W. L.; Henson, V. E.; McCormick, S. F., A Multigrid Tutorial (2000), SIAM · Zbl 0958.65128
[33] Trottenberg, U.; Oosterlee, C. W.; Schuller, A., Multigrid (2000), Academic Press
[34] Stüben, K., An Introduction to Algebraic Multigrid, 413-532 (2001)
[35] Lacroix, S.; Vassilevski, Y. V.; Wheeler, M. F., Iterative Solvers of the Implicit Parallel Accurate Reservoir Simulator (IPARS), I: Single Processor Case (2000), The University of Texas at Austin, TICAM Report 00-28
[36] Scheichl, R.; Masson, R.; Wendebourg, J., Decoupling and block preconditioning for sedimentary basin simulations, Comput. Geosci., 7, 4, 295-318 (2003) · Zbl 1076.76070
[37] Gries, S., System-AMG Approaches for Industrial Fully and Adaptive Implicit Oil Reservoir Simulations (2015), Universität zu Köln, Ph.D. Thesis
[38] Elman, H. C.; Silvester, D. J.; Wathen, A. J., Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics (2014), Oxford University Press: Oxford University Press USA · Zbl 1304.76002
[39] Mardal, K.-A.; Winther, R., Preconditioning discretizations of systems of partial differential equations, Numer. Linear Algebra Appl., 18, 1, 1-40 (2011) · Zbl 1249.65246
[40] Maday, Y.; Meiron, D.; Patera, A. T.; Rønquist, E. M., Analysis of iterative methods for the steady and unsteady Stokes problem: application to spectral element discretizations, SIAM J. Sci. Comput., 14, 2, 310-337 (1993) · Zbl 0769.76047
[41] Kay, D.; Loghin, D.; Wathen, A., A preconditioner for the steady-state Navier-Stokes equations, SIAM J. Sci. Comput., 24, 1, 237-256 (2002) · Zbl 1013.65039
[42] Balay, S.; Abhyankar, S.; Adams, M. F.; Brown, J.; Brune, P.; Buschelman, K.; Dalcin, L.; Eijkhout, V.; Gropp, W. D.; Kaushik, D.; Knepley, M. G.; McInnes, L. C.; Rupp, K.; Smith, B. F.; Zampini, S.; Zhang, H.; Zhang, H., PETSc web page (2017)
[43] Kirby, R. C.; Mitchell, L., Solver composition across the PDE/linear algebra barrier, SIAM J. Sci. Comput., 40, 1, C76-C98 (2018) · Zbl 1383.65021
[44] Christie, M.; Blunt, M., Tenth SPE comparative solution project: a comparison of upscaling techniques, (SPE Reservoir Simulation Symposium (2001), Society of Petroleum Engineers)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.