×

zbMATH — the first resource for mathematics

A discontinuous Galerkin method for the simulation of compressible gas-gas and gas-water two-medium flows. (English) Zbl 1453.76063
Summary: In this paper, we develop a new discontinuous Galerkin method for the simulation of shocks and interfaces in compressible gas-gas and gas-water two-medium flows by solving the \(\gamma \)-based model. The spatial discretization is carefully designed to possess the following features: discrete conservation in terms of the total mass, total momentum and total energy; high-order accuracy and consistency for smooth flows; free of oscillations at an isolated material interface. In order to handle potential discontinuities arising in the simulation, a nonlinear limiter based on the weighted essentially non-oscillatory (WENO) strategy is employed to suppress numerical oscillations and to preserve high order of accuracy in regions of smooth flows. The WENO reconstruction is imposed on suitably selected quantities, rather than the conserved ones. In case for discontinuities with large pressure ratio, low density and dramatic change of material property where unphysical variables may be encountered, a posteriori solution correction on the subcell level is locally adopted to enhance the robustness. A series of typical test cases for both one- and two-dimensional problems are provided to demonstrate the performance of the proposed method.

MSC:
76M10 Finite element methods applied to problems in fluid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
76T17 Two gas multicomponent flows
76T10 Liquid-gas two-phase flows, bubbly flows
76L05 Shock waves and blast waves in fluid mechanics
Software:
AUSM; HE-E1GODF; ReALE
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Pandare, A. K.; Luo, H., A robust and efficient finite volume method for compressible inviscid and viscous two-phase flows, J. Comput. Phys., 371, 67-91 (2018) · Zbl 1415.76477
[2] Murrone, A.; Guillard, H., A five equation reduced model for compressible two phase flow problems, J. Comput. Phys., 202, 664-698 (2005) · Zbl 1061.76083
[3] Cockburn, B.; Shu, C.-W., The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional system, J. Comput. Phys., 141, 199-224 (1998) · Zbl 0920.65059
[4] Cockburn, B.; Kanschat, G.; Sshotzau, D.; Schwab, C., Local discontinuous Galerkin methods for the stokes system, SIAM J. Sci. Comput., 40, 319-343 (2002) · Zbl 1032.65127
[5] Cockburn, B.; Hou, S.; Shu, C.-W., TVD Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework, Math. Comput., 52, 411-435 (1989) · Zbl 0662.65083
[6] Cockburn, B.; Lin, S. Y.; Shu, C.-W., TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems, J. Comput. Phys., 84, 90-113 (1989) · Zbl 0677.65093
[7] Tian, B. L.; Toro, E. F.; Castro, C. E., A path-conservative method for a five-equation model of two-phase flow with an HLLC-type Riemann solver, Comput. Fluids, 46, 122-132 (2011) · Zbl 1433.76166
[8] Chang, C.-Hao; Liou, M.-S., A robust and accurate approach to computing compressible multiphase flow: stratified flow model and \(AUSM^+\)-up scheme, J. Comput. Phys., 225, 840-873 (2007) · Zbl 1192.76030
[9] Parés, C., Numerical methods for nonconservative hyperbolic systems: a theoretical framework, SIAM J. Numer. Anal., 44, 300-321 (2006) · Zbl 1130.65089
[10] Parés, C.; Muñoz-Ruiz, M. L., On some difficulties of the numerical approximation of nonconservative hyperbolic systems, Bol. Soc. Esp. Mat. Apl., 47, 19-48 (2009)
[11] Shu, C.-W., A survey of strong stability preserving high order time discretizations, (Collected Lectures on the Preservation of Stability under Discretization, vol. 109 (2002)), 51-65
[12] Wang, C. W.; Shu, C.-W., An interface treating technique for compressible multi-medium flow with Runge-Kutta discontinuous Galerkin method, J. Comput. Phys., 229, 8823-8843 (2010) · Zbl 1282.76127
[13] Wang, C. W.; Liu, T. G.; Shu, C.-W., A real ghost fluid method for the simulation of multimedium compressible flow, SIAM J. Sci. Comput., 28, 278-302 (2006) · Zbl 1114.35119
[14] Franquet, E.; Perrier, V., Runge-Kutta discontinuous Galerkin method for the approximation of Baer and Nunziato type multiphase models, J. Comput. Phys., 231, 4096-4141 (2012) · Zbl 1426.76530
[15] Johnsen, E.; Colonius, T., Implementation of WENO schemes in compressible multicomponent flow problems, J. Comput. Phys., 219, 715-732 (2006) · Zbl 1189.76351
[16] Allaire, G.; Clerc, S.; Kokh, S., A five-equation model for the simulation of interfaces between compressible fluids, J. Comput. Phys., 181, 577-616 (2002) · Zbl 1169.76407
[17] Dal Maso, G.; Le Floch, P. G.; Murat, F., Definition and weak stability of nonconservative products, J. Math. Pures Appl., 74, 483-548 (1995) · Zbl 0853.35068
[18] Lu, H. L.; Zhu, J.; Wang, D. H.; Zhao, N., Runge-Kutta discontinuous Galerkin method with front tracking method for solving the compressible two-medium flow, Comput. Fluids, 126, 1-11 (2016) · Zbl 1390.76335
[19] Luo, H.; Baum, J.; Löhner, R., A Hermite WENO-based limiter for discontinuous Galerkin method on unstructured grids, J. Comput. Phys., 225, 686-713 (2007) · Zbl 1122.65089
[20] Luo, H.; Baum, J.; Löhner, R., A discontinuous Galerkin method based on a Taylor basis for the compressible flows on arbitrary grids, J. Comput. Phys., 227, 8875-8893 (2008) · Zbl 1391.76350
[21] Luo, H.; Luo, L.; Nourgaliev, R.; Mousseau, V.; Dinh, N., A reconstructed discontinuous Galerkin method for the compressible Navier-Stokes equations on arbitrary grids, J. Comput. Phys., 229, 6961-6978 (2010) · Zbl 1425.35138
[22] Luo, H.; Luo, L. Q.; Nourgaliev, R., A reconstructed discontinuous Galerkin method for the compressible Euler equations on arbitrary grids, Commun. Comput. Phys., 12, 1495-1519 (2012) · Zbl 1388.65124
[23] Terashima, H.; Tryggvason, G., A front-tracking/ghost-fluid method for fluid interfaces in compressible flows, J. Comput. Phys., 228, 4012-4037 (2009) · Zbl 1171.76046
[24] Haas, J. F.; Sturevant, B., Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities, J. Fluid Mech., 181, 41-76 (1987)
[25] Zhang, F.; Cheng, J.; Liu, T. G., A direct discontinuous Galerkin method for the incompressible Navier-Stokes equations on arbitrary grids, J. Comput. Phys., 380, 269-294 (2019)
[26] Qiu, J. X.; Shu, C.-W., Runge-Kutta discontinuous Galerkin method using WENO limiters, SIAM J. Sci. Comput., 26, 907-929 (2006) · Zbl 1077.65109
[27] Qiu, J. X.; Shu, C.-W., Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method: one-dimensional case, J. Comput. Phys., 193, 115-135 (2004) · Zbl 1039.65068
[28] Qiu, J. X.; Liu, T. G.; Khoo, B. C., Simulations of compressible two-medium flow by Runge-Kutta discontinuous Galerkin methods with the ghost fluid method, Commun. Comput. Phys., 3, 479-504 (2008) · Zbl 1195.76262
[29] Shyue, K.-M., An efficient shock-capturing algorithm for compressible multicomponent problems, J. Comput. Phys., 142, 208-242 (1998) · Zbl 0934.76062
[30] Shyue, K.-M., A fluid-mixture type algorithm for compressible multicomponent flow with van der Waals equation of state, J. Comput. Phys., 156, 43-88 (1999) · Zbl 0957.76039
[31] Shyue, K.-M., A fluid-mixture type algorithm for compressible multicomponent flow with Mie-Grüneisen equation of state, J. Comput. Phys., 171, 678-707 (2001) · Zbl 1047.76573
[32] Gryngarten, L. D.; Menon, S., A generalized approach for sub- and super-critical flows using the local discontinuous Galerkin method, Comput. Methods Appl. Mech. Eng., 253, 169-185 (2013) · Zbl 1297.76099
[33] Xu, L.; Feng, C. L.; Liu, T. G., Practical techniques in ghost fluid method for compressible multi-medium flows, Commun. Comput. Phys., 20, 619-659 (2016) · Zbl 1373.76223
[34] Xu, L.; Liu, T. G., Accuracies and conservation errors of various ghost fluid methods for multi-medium Riemann problem, J. Comput. Phys., 230, 4975-4990 (2011) · Zbl 1416.76233
[35] Xu, L.; Liu, T. G., Explicit interface treatments for compressible gas-liquid simulations, Comput. Fluids, 153, 34-48 (2017) · Zbl 1390.76884
[36] Dumbser, M.; Balsara, D. S.; Toro, E. F.; Munz, C.-D., A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes, J. Comput. Phys., 227, 8209-8253 (2008) · Zbl 1147.65075
[37] Dumbser, M.; Toro, E. F., A simple extension of the Osher Riemann solver to non-conservative hyperbolic systems, J. Sci. Comput., 48, 70-88 (2011) · Zbl 1220.65110
[38] Dumbser, M.; Zanotti, O.; Loubère, R.; Siot, S., A posteriori subcell limiting of the discontinuous Galerkin finite element method for hyperbolic conservation laws, J. Comput. Phys., 278, 47-75 (2014) · Zbl 1349.65448
[39] Dumbser, M.; Loubère, R., A simple robust and accurate a posteriori subcell finite volume limiter for the discontinuous Galerkin method on unstructured meshes, J. Comput. Phys., 319, 163-199 (2016) · Zbl 1349.65447
[40] Baer, M. R.; Nunziato, J. W., A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials, J. Multiph. Flow, 12, 861-889 (1986) · Zbl 0609.76114
[41] Henry de Frahan, M. T.; Varadan, S.; Johnsen, E., A new limiting procedure for discontinuous Galerkin methods applied to compressible multiphase flows with shocks and interfaces, J. Comput. Phys., 280, 489-509 (2015) · Zbl 1349.76220
[42] Haimovich, O.; Frankel, S. H., Numerical simulations of compressible multicomponent and multiphase flow using a high-order targeted ENO (TENO) finite volume method, Comput. Fluids, 146, 105-116 (2017) · Zbl 1390.76439
[43] Abgrall, R., How to prevent pressure oscillations in multicomponent flow calculations: a quasi conservative approach, J. Comput. Phys., 125, 150-160 (1996) · Zbl 0847.76060
[44] Abgrall, R.; Karni, S., Computations of compressible multifluids, J. Comput. Phys., 169, 594-623 (2001) · Zbl 1033.76029
[45] Abgrall, R.; Karni, S., A comment on the computation of non-conservative products, J. Comput. Phys., 229, 2759-2763 (2010) · Zbl 1188.65134
[46] Fedkiw, R. P.; Aslam, T.; Merriman, B.; Osher, S., A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method), J. Comput. Phys., 152, 457-492 (1999) · Zbl 0957.76052
[47] Saurel, R.; Abgrall, R., A simple method for compressible multifluid flows, SIAM J. Sci. Comput., 21, 1115-1145 (1999) · Zbl 0957.76057
[48] Saurel, R.; Abgrall, R., A multi-phase Godunov method for compressible multifluid and multiphase flows, J. Comput. Phys., 150, 425-467 (1999) · Zbl 0937.76053
[49] Fechter, S.; Munz, C.-D., A discontinuous Galerkin-based sharp-interface method to simulate three-dimensional compressible two-phase flow, Int. J. Numer. Methods Fluids, 78, 413-435 (2015)
[50] Osher, S.; Fedkiw, R., Level Set Methods and Dynamic Implicit Surfaces (2002), Springer: Springer New York
[51] Rhebergen, S.; Bokhove, O.; van der Vegt, J. J.W., Discontinuous Galerkin finite element methods for hyperbolic nonconservative partial differential equations, J. Comput. Phys., 227, 1887-1922 (2008) · Zbl 1153.65097
[52] Liu, T. G.; Khoo, B. C.; Yeo, K. S., Ghost fluid method for strong shock impacting on material interface, J. Comput. Phys., 190, 651-681 (2003) · Zbl 1076.76592
[53] Liu, T. G.; Khoo, B. C.; Wang, C. W., The ghost fluid method for compressible gas-water simulation, J. Comput. Phys., 204, 193-221 (2005) · Zbl 1190.76160
[54] Liu, T. G.; khoo, B. C.; Yoo, K. S., The simulation of compressible multi-medium flow: I. A new methodology with test applications to 1D gas-gas and gas-water cases, Comput. Fluids, 30, 291-314 (2001) · Zbl 1052.76046
[55] Liu, T. G.; Khoo, B. C.; Yeo, K. S., The simulation of compressible multi-medium flow. Part II: applications to 2D underwater shock refraction, Comput. Fluids, 30, 315-337 (2001) · Zbl 1052.76046
[56] Coralic, V.; Colonius, T., Finite-volume WENO scheme for viscous compressible multicomponent flows, J. Comput. Phys., 274, 95-121 (2014) · Zbl 1351.76100
[57] Deng, X.; Inaba, S.; Xie, B.; Shyue, K.-M.; Xiao, F., High fidelity discontinuity-resolving reconstruction for compressible multiphase flows with moving interfaces, J. Comput. Phys., 371, 945-966 (2018) · Zbl 1415.76465
[58] Deng, X.-L.; Li, M. J., Simulating compressible two-medium flows with sharp-interface adaptive Runge-Kutta discontinuous Galerkin methods, J. Sci. Comput., 5, 1-22 (2017)
[59] He, Z. W.; Tian, B. L.; Zhang, Y. S.; Gao, F. J., Characteristic-based and interface-sharpening algorithm for high-order simulations of immiscible compressible multi-material flows, J. Comput. Phys., 333, 247-268 (2017) · Zbl 1375.76207
[60] He, Z. W.; Zhang, Y. S.; Li, X. L.; Li, L.; Tian, B. L., Preventing numerical oscillations in the flux-split based finite difference method for compressible flows with discontinuities, J. Comput. Phys., 300, 269-287 (2015) · Zbl 1349.76474
[61] Johnsen, E., On the treatment of contact discontinuities using WENO schemes, J. Comput. Phys., 230, 8665-8668 (2011) · Zbl 1370.76078
[62] Mickoski, C.; Evans, J. A.; Schmitz, P. G.; Vasseur, A., A discontinuous Galerkin method for viscous compressible multifluids, J. Comput. Phys., 229, 2249-2266 (2010) · Zbl 1303.76088
[63] Krivodonova, L., Limiters for high-order discontinuous Galerkin methods, J. Comput. Phys., 226, 879-896 (2007) · Zbl 1125.65091
[64] Kuzmin, D., Hierarchical slope limiting in explicit and implicit discontinuous Galerkin methods, J. Comput. Phys., 257, 1140-1162 (2014) · Zbl 1352.65355
[65] Zhu, J.; Qiu, J. X.; Shu, C.-W.; Dumbser, M., Runge-Kutta discontinuous Galerkin method using WENO limiters II: unstructured meshes, J. Comput. Phys., 227, 4330-4353 (2008) · Zbl 1157.65453
[66] Zhu, J.; Qiu, J. X., Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method III: unstructured meshes, J. Sci. Comput., 39, 293-321 (2009) · Zbl 1203.65156
[67] Qiu, J. X.; Liu, T. G.; Khoo, B. C., Runge-Kutta discontinuous Galerkin methods for compressible two-medium flow simulations: one-dimensional case, J. Comput. Phys., 222, 353-373 (2007) · Zbl 1127.76028
[68] Nourgaliev, R. R.; Dinh, T. N.; Theofanous, T. G., Adaptive characteristics-based matching for compressible multifluid dynamics, J. Comput. Phys., 213, 500-529 (2006) · Zbl 1136.76396
[69] Nourgaliev, R. R.; Liou, M.-S.; Theofanous, T. G., Numerical prediction of interfacial instabilities: sharp interface method (SIM), J. Comput. Phys., 227, 3940-3970 (2008) · Zbl 1275.76164
[70] Zhu, J.; Qiu, J. X.; Liu, T. G.; Khoo, B. C., RKDG methods with WENO type limiters and conservative interfacial procedure for one-dimensional compressible multi-medium flow simulations, Appl. Numer. Math., 61, 554-580 (2011) · Zbl 1366.76067
[71] Jia, Z.; Zhang, S., A new high-order discontinuous Galerkin spectral finite element method for Lagrangian gas dynamics in two-dimensions, J. Comput. Phys., 230, 2496-2522 (2011) · Zbl 1316.76049
[72] Cheng, J.; Shu, C.-W., Positivity-preserving Lagrangian scheme for multi-material compressible flow, J. Comput. Phys., 257, 143-168 (2014) · Zbl 1349.76439
[73] Cheng, J.; Shu, C.-W., Second order symmetry-preserving conservative Lagrangian scheme for compressible Euler equations in two-dimensional cylindrical coordinates, J. Comput. Phys., 272, 245-265 (2014) · Zbl 1349.65367
[74] Liu, X.; Morgan, N.; Burton, D., A Lagrangian discontinuous Galerkin hydrodynamic method, Comput. Fluids, 163, 68-85 (2018) · Zbl 1390.76477
[75] Morgan, N.; Liu, X.; Burton, D., Reducing spurious mesh motion in Lagrangian finite volume and discontinuous Galerkin hydrodynamic methods, J. Comput. Phys., 372, 35-61 (2018) · Zbl 1415.76475
[76] Liu, X.; Morgan, N.; Burton, D., A high-order Lagrangian discontinuous Galerkin hydrodynamic method for quadratic cells using a subcell mesh stabilization scheme, J. Comput. Phys., 386, 110-157 (2019)
[77] A.K. Pandare, C.J. Wang, H. Luo, M. Shashkov, A Reconstructed Discontinuous Galerkin Method for Compressible Multiphase Flows in Lagrangian Formulation, AIAA 2018-0595.
[78] Burton, D. E.; Morgan, N. R.; Carney, T. C.; Kenamond, M. A., Reduction of dissipation in Lagrange cell-centered hydrodynamics (CCH) through corner gradient reconstruction (CGR), J. Comput. Phys., 299, 229-280 (2015) · Zbl 1351.76099
[79] Loubère, R.; Maire, P.-H.; Shashkov, M.; Breil, J.; Galera, S., ReALE: a reconnection-based arbitrary-Lagrangian-Eulerian method, J. Comput. Phys., 229, 4724-4761 (2010) · Zbl 1305.76067
[80] Barlow, A. J.; Maire, P.-H.; Rider, W. J.; Rieben, R. N.; Shashkov, M., Arbitrary Lagrangian-Eulerian methods for modeling high-speed compressible multimaterial flows, J. Comput. Phys., 322, 603-665 (2016) · Zbl 1351.76093
[81] Maire, P.-H.; Abgrall, R.; Breil, J.; Ovadia, J., A cell-centered Lagrangian scheme for two-dimensional compressible flow problems, SIAM J. Sci. Comput., 29, 1781-1824 (2007) · Zbl 1251.76028
[82] Shukla, R. K.; Pantano, C.; Freund, J. B., An interface capturing method for the simulation of multi-phase compressible flows, J. Comput. Phys., 229, 7411-7439 (2010) · Zbl 1425.76289
[83] Kitamura, K.; Nonomura, T., Simple and robust HLLC extensions of two-fluid AUSM for multiphase flow computations, Comput. Fluids, 100, 321-335 (2014) · Zbl 1391.76480
[84] Kapila, A. K.; Menikoff, R.; Bdzil, J. B.; Son, S. F.; Stewart, D. S., Two-phase modeling of deflagration-to-detonation transition in granular materials: reduced equations, Phys. Fluids, 13, 3000-3024 (2001) · Zbl 1184.76268
[85] Kuzmin, D., A vertex-based hierarchical slope limiter for p-adaptive discontinuous Galerkin methods, J. Comput. Appl. Math., 233, 3077-3085 (2010) · Zbl 1252.76045
[86] Lin, J.-Y.; Shen, Y.; Ding, H.; Liu, N.-S.; Lu, X.-Y., Simulation of compressible two-phase flows with topology change of fluid-fluid interface by a robust cut-cell method, J. Comput. Phys., 328, 140-159 (2017)
[87] Nourgaliev, R. R.; Theofanous, T. G., High-fidelity interface tracking in compressible flows: unlimited anchored adaptive level set, J. Comput. Phys., 224, 836-866 (2007) · Zbl 1124.76043
[88] Hu, X. Y.; Adams, N. A.; Laccarino, G., On the HLLC Riemann solver for interface interaction in compressible multi-fluid flow, J. Comput. Phys., 228, 6572-6589 (2009) · Zbl 1261.76023
[89] Terashima, H.; Tryggvason, G., A front-tracking method with projected interface conditions for compressible multi-fluid flows, Comput. Fluids, 39, 1804-1814 (2010) · Zbl 1245.76113
[90] Toro, E. F., Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction (2013), Springer Science & Business Media
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.