×

zbMATH — the first resource for mathematics

A 3D conservative sharp interface method for simulation of compressible two-phase flows. (English) Zbl 1453.76111
Summary: A three-dimensional (3D) conservative sharp interface (CSI) method, which combines 3D cut-cell methods and finite volume methods in the arbitrary Lagrangian-Eulerian framework, is proposed to simulate compressible inviscid two-phase flows. The 3D cut-cell method allows to reconstruct interfaces on a Cartesian mesh and update unstructured interface cells in the vicinity of the interface, making the reconstructed interface always coinciding with the cell faces of the interface cells. The complexity in generating 3D interface cells is significantly reduced by exploiting the symmetry and rotational symmetry of fluid positions in a cut cell. Compared to our previous two-dimensional work [the authors, “Simulation of compressible two-phase flows with topology change of fluid-fluid interface by a robust cut-cell method”, J. Comput. Phys. 328, 140–159 (2017; doi:10.1016/j.jcp.2016.10.023)], the occurrence of large interface cells is also avoided by using the new strategy of cell assembly. With the help of the 3D cut-cell method, a second-order finite volume method in the arbitrary Lagrangian-Eulerian framework can be used nearly in the whole domain, except for the interface cells with under-resolved interfaces or topology changes, at which a first-order finite volume method is used instead. The convergence of the 3D CSI method is examined by studying the Rayleigh collapse of a gas bubble in water, and second-order accuracy has been obtained for the interface evolution. Simulation of shock-induced bubble collapse demonstrates that the axisymmetricity of the interface is well preserved in the 3D computation. Moreover, the 3D CSI methods are also given experimental validation, including the interaction of a shock with 3D curved gas-gas interface and droplet deformation after shock impact. In all cases, a good agreement has been achieved with the experimental data, with respect to the interface evolution and flow features.
MSC:
76M12 Finite volume methods applied to problems in fluid mechanics
76T10 Liquid-gas two-phase flows, bubbly flows
Software:
AUSM
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Johnsen, T.; Colonius, E., Shock-induced collapse of a gas bubble in shockwave lithotripsy, J. Acoust. Soc. Am., 124, 4, 2011-2020 (2008)
[2] Wang, Q.; Manmi, K.; Calvisi, M. L., Numerical modeling of the 3d dynamics of ultrasound contrast agent microbubbles using the boundary integral method, Phys. Fluids, 27, 2, Article 022104 pp. (2015) · Zbl 1326.76118
[3] Theofanous, T., Aerobreakup of Newtonian and viscoelastic liquids, Annu. Rev. Fluid Mech., 43, 661-690 (2011) · Zbl 1299.76217
[4] Gelfand, B. E., Droplet breakup phenomena in flows with velocity lag, Prog. Energy Combust. Sci., 22, 201-265 (1996)
[5] Glimm, J.; Li, X.; Liu, Y.; Xu, Z.; Zhao, N., Conservative front tracking with improved accuracy, SIAM J. Numer. Anal., 41, 5, 1926-1947 (2003) · Zbl 1053.35093
[6] Barton, P.; Obadia, B.; Drikakis, D., A conservative level-set based method for compressible solid/fluid problems on fixed grids, J. Comput. Phys., 230, 7867-7890 (2011) · Zbl 1432.74060
[7] Schneiders, L.; Hartmann, D.; Meinke, M.; Schröder, W., An accurate moving boundary formulation in cut-cell methods, J. Comput. Phys., 235, 786-809 (2013)
[8] Gokhale, N.; Nikiforakis, N.; Klein, R., A dimensionally split Cartesian cut cell method for hyperbolic conservation laws, J. Comput. Phys., 364, 186-208 (2018) · Zbl 1395.65048
[9] Berndt, M.; Breil, J.; Galera, S.; Kucharik, M.; Maire, P.-H.; Shashkov, M., Two-step hybrid conservative remapping for multimaterial arbitrary Lagrangian-Eulerian methods, J. Comput. Phys., 230, 6664-6687 (2011) · Zbl 1408.65077
[10] Hirt, C. W.; Amsden, A. A.; Cook, J. L., An arbitrary Lagrangian-Eulerian computing method for all flow speeds, J. Comput. Phys., 14, 227-253 (1974) · Zbl 0292.76018
[11] Hu, X. Y.; Khoo, B. C.; Adams, N. A.; Huang, F. L., A conservative interface method for compressible flows, J. Comput. Phys., 219, 2, 553-578 (2006) · Zbl 1102.76038
[12] Lauer, E.; Hu, X. Y.; Hickel, S.; Adams, N. A., Numerical modelling and investigation of symmetric and asymmetric cavitation bubble dynamics, Comput. Fluids, 69, 1-19 (2012) · Zbl 1365.76231
[13] Han, L.; Hu, X.; Adams, N., Scale separation for multi-scale modeling of free-surface and two-phase flows with the conservative sharp interface method, J. Comput. Phys., 280, 387-403 (2015) · Zbl 1349.76471
[14] Luo, J.; Hu, X.; Adams, N., Efficient formulation of scale separation for multi-scale modeling of interfacial flows, J. Comput. Phys., 308, 411-420 (2016) · Zbl 1351.76173
[15] Pan, S.; Han, L.; Hu, X.; Adams, N. A., A conservative interface-interaction method for compressible multi-material flows, J. Comput. Phys., 371, 870-895 (2018) · Zbl 1415.76503
[16] Chang, C.-H.; Deng, X.; Theofanous, T. G., Direct numerical simulation of interfacial instabilities: a consistent, conservative, all-speed, sharp-interface method, J. Comput. Phys., 242, 946-990 (2013) · Zbl 1299.76097
[17] Lin, J.-Y.; Shen, Y.; Ding, H.; Liu, N.-S.; Lu, X.-Y., Simulation of compressible two-phase flows with topology change of fluid-fluid interface by a robust cut-cell method, J. Comput. Phys., 328, 140-159 (2017)
[18] Kim, H.; Liou, M.-S., Adaptive Cartesian cut-cell sharp interface method \((aC^3\) SIM) for three-dimensional multi-phase flows, Shock Waves (2019)
[19] Nourgaliev, R. R.; Dinh, T. N., Adaptive characteristics-based matching for compressible multifluid dynamics, J. Comput. Phys., 213, 2, 500-529 (2006) · Zbl 1136.76396
[20] Osher, S.; Sethian, J. A., Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys., 79, 1, 12-49 (1988) · Zbl 0659.65132
[21] van Leer, B., Towards the ultimate conservative difference scheme V. A second-order seqeual to Godunov’s method, J. Comput. Phys., 32, 1, 101-136 (1979) · Zbl 1364.65223
[22] van Leer, B., Towards the ultimate conservative difference scheme II: monotonicity and conservation combined in a second order scheme, J. Comput. Phys., 14, 4, 361-370 (1974) · Zbl 0276.65055
[23] Nourgaliev, R. R.; Liou, M.-S.; Theofanous, T. G., Numerical prediction of interfacial instabilities: sharp interface method (SIM), J. Comput. Phys., 227, 8, 3940-3970 (2008) · Zbl 1275.76164
[24] Barth, T. J.; Jespersen, D. C., The Design and Application of Upwind Schemes on Unstructured Meshes (1989), AIAA Paper 89-0366
[25] Toro, E., Riemann Solvers and Numerical Methods for Fluid Dynamics (2009), Springer
[26] Liou, M.-S., A sequel to AUSM, part II: \(AUSM^+\)-up for all speeds, J. Comput. Phys., 214, 137-170 (2006) · Zbl 1137.76344
[27] Courant, R.; Friedrichs, K.; Lewy, H., On the partial difference equations of mathematical physics, IBM J. Res. Dev., 11, 2, 215-234 (1967) · Zbl 0145.40402
[28] Shu, C.-W.; Osher, S., Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phys., 77, 2, 439-471 (1988) · Zbl 0653.65072
[29] Osher, S.; Fedkiw, R., Level Set Methods and Dynamic Implicit Surfaces (2003), Springer · Zbl 1026.76001
[30] Adalsteinsson, D.; Sethian, J. A., The fast construction of extension velocities in level set methods, J. Comput. Phys., 148, 2-22 (1999) · Zbl 0919.65074
[31] Sussman, M.; Smereka, P.; Osher, S., A level set approach for computing solutions to incompressible two-phase flow, J. Comput. Phys., 114, 1, 146-159 (1994) · Zbl 0808.76077
[32] Russo, G.; Smereka, P., A remark on computing distance functions, J. Comput. Phys., 163, 51-67 (2000) · Zbl 0964.65089
[33] Min, C., On reinitializing level set functions, J. Comput. Phys., 229, 2764-2772 (2010) · Zbl 1188.65122
[34] Ivings, M. J.; Causon, D. M.; Toro, E. F., On Riemann solvers for compressible liquids, Int. J. Numer. Methods Fluids, 28, 3, 395-418 (1998) · Zbl 0918.76047
[35] Wang, Z.-J., Improved formulation for geometric properties of arbitrary polyhedra, AIAA J., 37, 10, 1326-1327 (1999)
[36] Hawker, N. A.; Ventikos, Y., Interaction of a strong shockwave with a gas bubble in a liquid medium: a numerical study, J. Fluid Mech., 701, 59-97 (2012) · Zbl 1248.76105
[37] Ding, J.; Si, T.; Chen, M.; Zhai, Z.; Lu, X.; Luo, X., On the interaction of a planar shock with a three-dimensional light gas cylinder, J. Fluid Mech., 828, 289-317 (2017) · Zbl 07135890
[38] Theofanous, T. G.; Mitkin, V. V.; Ng, C. L.; Chang, C.-H.; Deng, X.; Sushchikh, S., The physics of aerobreakup. II. Viscous liquids, Phys. Fluids, 24, Article 022104 pp. (2012)
[39] Meng, J. C.; Colonius, T., Numerical simulation of the aerobreakup of a water droplet, J. Fluid Mech., 835, 1108-1135 (2018) · Zbl 1419.76540
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.