×

zbMATH — the first resource for mathematics

Implicit method for the solution of supersonic and hypersonic 3D flow problems with lower-upper symmetric-Gauss-Seidel preconditioner on multiple graphics processing units. (English) Zbl 1453.76089
Summary: The paper describes a numerical method for the solution of stationary gas dynamics 3D spatial equations on unstructured grids that is designed for multiple graphics processing unit (GPU) computational architecture. Discretization of governing equations is done using first and second order TVD schemes. The Newton’s method with simple pseudo time-step homotopy is used to solve the problem. Each iteration step involves solution of the linear system originated from the linearization of gas dynamics equations. Krylov subspace iterative methods are used to solve the linear system. The main aim of the paper is to describe a preconditioning Lower-Upper Symmetric-Gauss-Seidel (LU-SGS) method and its adaptation on multiple GPU computational systems. It is shown that deliberately reordered matrices with rearranged solution process of arising lower and upper triangular linear systems allow one to obtain close algebraic properties to the original single threaded LU-SGS. The method is benchmarked against published results. The analysis of computational efficiency and acceleration is presented for different flows with Mach number ranging from 1.2 up to 25.
MSC:
76M12 Finite volume methods applied to problems in fluid mechanics
65F08 Preconditioners for iterative methods
65M22 Numerical solution of discretized equations for initial value and initial-boundary value problems involving PDEs
76K05 Hypersonic flows
76J20 Supersonic flows
65Y05 Parallel numerical computation
Software:
AUSM; AUSMPW+
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Jameson, A.; Yoon, S., Lower-upper implicit schemes with multiple grids for the Euler equations, AIAA J., 25, 929-935 (1987)
[2] Kim, J.; Kwon, O., Improvement on block Lu-sgs scheme for unstructured mesh Navier-Stokes computations, (40th AIAA Aerospace Sciences Meeting and Exhibit (2002))
[3] Sharov, D.; Nakahashi, K., Reordering of hybrid unstructured grids for lower-upper symmetric Gauss-Seidel computations, AIAA J., 36, 484-486 (1998)
[4] Sharov, D.; Luo, H.; Joseph, D. B.; Lohner, R., Implementation of unstructured grid gmres+Lu-sgs method on shared-memory, cache-based parallel computers (2012), AIAA-2000-927-Aerospace Sciences Meeting and Exhibit
[5] Luo, H.; Baum, J. D.; Lohner, R., A fast, matrix-free implicit method for compressible flows on unstructured grids, J. Comput. Phys., 146, 664-690 (1998) · Zbl 0931.76045
[6] Elsen, E.; Legresley, P.; Darve, E., Large calculation of the flow over a hypersonic vehicle using a gpu, J. Comput. Phys., 227, 10148-10161 (2008) · Zbl 1218.76035
[7] Lai, J.; Li, H.; Tian, Z.; Zhang, Y., A multi-gpu parallel algorithm in hypersonic flow computations, Math. Probl. Eng., 2019, Article 2053156 pp. (2019)
[8] Emelyanov, V.; Karpenko, A.; Volkov, K., Simulation of hypersonic flows with equilibrium chemical reactions on graphics processor units, Acta Astronaut., 163, Part A, 259-271 (2019)
[9] Bocharov, A.; Evstigneev, N.; Ryabkov, O., Computational gas dynamics in a wide range of Mach number on heterogeneous cluster architecture, J. Phys. Conf. Ser., 653, Article 012119 pp. (2015)
[10] Menshov, I.; Pavlukhin, P., Highly scalable implementation of an implicit matrix-free solver for gas dynamics on gpu-accelerated clusters, J. Supercomput., 73, 2, 631-638 (2017)
[11] Aissa, M.; Verstraete, T.; Vuik, C., Toward a gpu-aware comparison of explicit and implicit cfd simulations on structured meshes, Comput. Math. Appl., 74, 1, 201-217 (2017) · Zbl 1394.65141
[12] Jiale, Z.; Zhihua, M.; Hongquan, C.; Cheng, C., A gpu-accelerated implicit meshless method for compressible flows, J. Comput. Phys., 360, 39-56 (2018) · Zbl 1391.76591
[13] Watkins, J.; Romero, J.; Jameson, A., Multi-gpu, implicit time stepping for high-order methods on unstructured grids, (46th AIAA Fluid Dynamics Conference (2016))
[14] Tuan, N.; Castonguay, P.; Laurendeau, E., Gpu parallelization of multigrid rans solver for three-dimensional aerodynamic simulations on multiblock grids, J. Supercomput., 75, 5, 2562-2583 (2019)
[15] Bocharov, A.; Bityurin, V.; Evstigneev, N., Coupled gas heat and mass transfer problem solution using fully implicit method on graphics processing units, J. Phys. Conf. Ser., 1147, Article 012053 pp. (2019)
[16] Sutherland, W., The viscosity of gases and molecular force, Philos. Mag., 5, 36, 507-531 (1893) · JFM 25.1544.01
[17] Berger, M.; Aftosmis, M., Analysis of slope limiters on irregular grids, (43rd AIAA Aerospace Sciences Meeting and Exhibit (2012))
[18] Breuss, M., The correct use of the Lax-Friedrichs method, ESAIM: Math. Modél. Numér. Anal., 38, 3, 519-540 (2004) · Zbl 1077.65089
[19] Liou, M. S., A sequel to ausm, part II: ausm + -up for all speeds, J. Comput. Phys., 214, 1, 137-170 (2006) · Zbl 1137.76344
[20] Wada, Y.; Liou, M.-S., An accurate and robust flux splitting scheme for shock and contact discontinuities, SIAM J. Sci. Comput., 18, 633-657 (1997) · Zbl 0879.76064
[21] Kim, K. H.; Kim, C.; Rho, O.-H., Methods for the accurate computations of hypersonic flows: I. ausmpw+scheme, J. Comput. Phys., 174, 1, 38-80 (2001) · Zbl 1106.76421
[22] Rudy, D. H.; Strikwerda, J., Boundary conditions for subsonic compressible Navier-Stokes calculation, Comput. Fluids, 9, 327-338 (1981) · Zbl 0452.76042
[23] Huang, A. C.; Allmaras, S.; Galbraith, M.; Darmofal, D., Well-posed subsonic inflow/outflow boundary conditions for the Navier-Stokes equations, (2018 AIAA Aerospace Sciences Meeting (2018)), 1-21
[24] Cuthill, E. H.; McKee, J., Reducing bandwidth of sparse symmetric matrices, (Proc. ACM 24th National Conf.. Proc. ACM 24th National Conf., New York (1969)), 157-172
[25] Gibbs, J.; Gibbs, E.; Poole, William G.; Stockmeyer, P. K., An algorithm for reducing the bandwidth and profile of a sparse matrix, SIAM J. Numer. Anal., 13, 2, 236-250 (1976) · Zbl 0329.65024
[26] Karypis, G.; Kumar, V., Multilevel k-way partitioning scheme for irregular graphs, J. Parallel Distrib. Comput., 48, 1, 96-129 (1998)
[27] Karypis, G.; Kumar, V., A fast and high quality multilevel scheme for partitioning irregular graphs, SIAM J. Sci. Comput., 20, 1, 359-392 (1998) · Zbl 0915.68129
[28] Tadjouddine, S. A.F. M.; Qin, N., Elimination ad applied to Jacobian assembly for an implicit compressible cfd solver, Int. J. Numer. Methods Fluids, 47, 1315-1321 (2005) · Zbl 1155.76384
[29] Sleijpen, G. L.; Fokkema, D. R., Bicgstab(l) for linear equations involving unsymmetric matrices with complex spectrum, Electron. Trans. Numer. Anal., 1, 11-32 (1993) · Zbl 0820.65016
[30] Arias, O.; Falcinelli, O.; Fico, N.; Elaskar, S., Finite volume simulation of a flow over a naca 0012 using Jameson, maccormack, shu and tvd esquemes, Mec. Comput., 26, 3097-3116 (2007)
[31] M., C., 5.2a, 3d supersonic flow in a channel with a bump (2008), [Online]
[32] Gnoffo, P., Multi-dimensional, inviscid flux reconstruction for simulation of hypersonic heating on tetrahedral grids, (47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition (2009)), 1-18
[33] Candler, G.; Barnhardt, M.; Drayna, T.; Nompelis, I.; Peterson, D.; Subbareddy, P., Unstructured grid approaches for accurate aeroheating simulations (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.