zbMATH — the first resource for mathematics

Adaptive mesh refinement in the fast lane. (English) Zbl 1453.65299
Summary: This paper presents an approach for constructing an adaptive mesh refinement (AMR) scheme, targeting next-generation computing hardware. The key to the design is the particular combination of aspects of cell-based AMR and patch-based AMR. We examine the feasibility of this new method with respect to correctness, preservation of circular symmetry, ease of programming and performance impacts on runtime and memory usage. This method exploration is done in CLAMR, a cell-based AMR mini-app that already runs on GPUs and other next-generation hardware platforms. The composability of the application is improved by decoupling the physics code and mesh code. Each level of the mesh is made independent through the use of phantom cells. The net result is a clear pathway to getting the full application on the GPU while also minimizing development requirements to convert a regular grid application to AMR.
Reviewer: Reviewer (Berlin)
65M50 Mesh generation, refinement, and adaptive methods for the numerical solution of initial value and initial-boundary value problems involving PDEs
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
Full Text: DOI
[1] Alcrudo, Francisco; Garcia-Navarro, Pilar, A high-resolution Godunov-type scheme in finite volumes for the 2D shallow-water equations, Int. J. Numer. Methods Fluids, 16, 489-505 (1993) · Zbl 0766.76067
[2] Beckingsale, David; Gaudin, Wayne; Herdman, Andrew; Jarvis, Stephen, Resident block-structured adaptive mesh refinement on thousands of graphics processing units, (44th International Conference on Parallel Processing (2015))
[3] Berger, Marsha J.; LeVeque, Randall J., Adaptive mesh refinement using wave-propagation algorithms for hyperbolic systems, SIAM J. Numer. Anal., 35, 6, 2298-2316 (1998) · Zbl 0921.65070
[4] Berger, Marsha J.; Oliger, Joseph, Adaptive mesh refinement for hyperbolic partial differential equations, J. Comput. Phys., 53, 3, 484-512 (1984) · Zbl 0536.65071
[5] Burstedde, Carsten; Wilcox, Lucas C.; Ghattas, Omar, p4est: scalable algorithms for parallel adaptive mesh refinement on forests of octrees, SIAM J. Sci. Comput., 33, 3, 1103-1133 (2011) · Zbl 1230.65106
[6] Davis, S. F., TVD Finite Difference Schemes, and Artificial Viscosity. ICASE report no. 84-20. National Aeronautics and Space Administration (1984), USA
[7] Davis, Stephen F., A simplified TVD finite difference scheme via artificial viscosity, SIAM J. Sci. Stat. Comput., 8, 1, 1-18 (1987) · Zbl 0689.65058
[8] DeZeeuw, Darren; Powell, Kenneth G., An adaptively refined Cartesian mesh solver for the Euler equations, J. Comput. Phys., 104, 1, 56-68 (1993) · Zbl 0766.76066
[9] Gittings, Michael; Weaver, Robert; Clover, Michael; Betlach, Thomas; Byrne, Nelson; Coker, Robert; Dendy, Edward; Hueckstaedt, Robert; New, Kim; Oakes, W. Rob, The RAGE radiation-hydrodynamic code, Comput. Sci. Discov., 1, 1, Article 015005 pp. (2008)
[10] Griebel, Michael; Zumbusch, Gerhard, Parallel multigrid in an adaptive PDE solver based on hashing and space-filling curves, Parallel Comput., 25, 7, 827-843 (1999) · Zbl 0945.65138
[11] Guittet, Arthur; Theillard, Maxime; Gibou, Frédéric, A stable projection method for the incompressible Navier-Stokes equations on arbitrary geometries and adaptive quad/octrees, J. Comput. Phys., 292, 215-238 (2015) · Zbl 1349.76336
[12] Gutierrez Andres, J.; Lhomme, J.; Weisberger, A.; Cooper, A.; Gouldby, B.; Mullet-Marti, J., Testing and application of a practical new 2D hydrodynamic model, (Proceedings of the FloodRisk 2008 Conference (2009))
[13] Ji, Hua; Lien, Fue-Sang; Yee, Eugene, A new adaptive mesh refinement data structure with an application to detonation, J. Comput. Phys., 229, 23, 8981-8993 (2010) · Zbl 1207.80023
[14] Khokhlov, Alexei M., Fully threaded tree algorithms for adaptive refinement fluid dynamics simulations, J. Comput. Phys., 143, 2, 519-543 (1998) · Zbl 0934.76057
[15] Leveque, R. J., Finite Volume Methods for Hyperbolic Problems (2002), Cambridge University Press · Zbl 1010.65040
[16] Lhomme, J.; Gutierrez-Andres, J.; Weisgerber, A.; Davison, M.; Mulet-Marti, J.; Cooper, A.; Gouldby, B., Testing a new two-dimensional flood modelling system: analytical tests and application to a flood event, J. Flood Risk Manag., 1, 3, 33-51 (2010)
[17] Mirzadeh, Mohammad; Guittet, Arthur; Burstedde, Carsten; Gibou, Frederic, Parallel level-set methods on adaptive tree-based grids, J. Comput. Phys., 322, 345-364 (2016) · Zbl 1352.65253
[18] Mirzadeh, Mohammad; Theillard, Maxime; Gibou, Frédéric, A second-order discretization of the nonlinear Poisson-Boltzmann equation over irregular geometries using non-graded adaptive Cartesian grids, J. Comput. Phys., 230, 5, 2125-2140 (2011) · Zbl 1390.82056
[19] Morris, M., (Proceedings of the CADAM Meeting, Wallingford, United Kingdom: Concerted Action on Dam-Break Modelling, 2 and 3 March 1998 (1999))
[20] Nicholaeff, D.; Davis, N.; Trujillo, D.; Robey, R. W., Cell-based adaptive mesh refinement implemented with general purpose graphics processing units (2012), Tech. Rep. LA-UR-11-07127
[21] Robey, Rachel N.; Nicholaeff, David; Robey, Robert W., Hash-based algorithms for discretized data, SIAM J. Sci. Comput., 35, 4, C346-C368 (2013) · Zbl 1276.68172
[22] Sætra, Martin L.; Brodtkorb, André R.; Lie, Knut-Andreas, Efficient GPU-implementation of adaptive mesh refinement for the shallow-water equations, J. Sci. Comput., 63, 1, 23-48 (2015) · Zbl 1330.76088
[23] Toro, Eleuterio F., Shock-Capturing Methods for Free-Surface Shallow Flows (2001), John Wiley & Sons, Ltd · Zbl 0996.76003
[24] Tseng, Ming-Hseng, Explicit finite volume non-oscillatory schemes for 2D transient free-surface flows, Int. J. Numer. Methods Fluids, 30, 831-843 (1999) · Zbl 0957.76041
[25] Tumblin, Rebecka; Ahrens, Peter; Hartse, Sara; Robey, Robert W., Parallel compact hash algorithms for computational meshes, SIAM J. Sci. Comput., 37, 1, C31-C53 (2015) · Zbl 1343.65144
[26] Wang, Yueling; Liang, Qiuhua; Kesserwani, Georges; Hall, Jim W., A 2D shallow flow model for practical dam-break simulations, J. Hydraul. Res., 49, 3, 307-316 (2011) · Zbl 1433.76112
[27] Warren, Michael S.; Salmon, John K., A parallel hashed oct-tree n-body algorithm, (Proceedings of the 1993 ACM/IEEE Conference on Supercomputing (1993), ACM), 12-21
[28] Yee, H. C., Construction of explicit and implicit symmetric TVD schemes and their applications, J. Comput. Phys., 68, 1, 151-179 (1987) · Zbl 0621.76026
[29] Young, David P.; Melvin, Robin G.; Bieterman, Michael B.; Johnson, Forrester T.; Samant, Satish S.; Bussoletti, John E., A locally refined rectangular grid finite element method: application to computational fluid dynamics and computational physics, J. Comput. Phys., 92, 1, 1-66 (1991) · Zbl 0709.76078
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.