×

zbMATH — the first resource for mathematics

An exact algorithmic framework for a class of mixed-integer programs with equilibrium constraints. (English) Zbl 1458.90482
MSC:
90C11 Mixed integer programming
90C26 Nonconvex programming, global optimization
90C30 Nonlinear programming
90C33 Complementarity and equilibrium problems and variational inequalities (finite dimensions) (aspects of mathematical programming)
Software:
CPLEX
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] R. Andreani and J. M. Martínez, On the solution of mathematical programming problems with equilibrium constraints, Math. Methods Oper. Res., 54 (2001), pp. 345-358. · Zbl 1031.90067
[2] B. Baumrucker, J. Renfro, and L. Biegler, MPEC problem formulations and solution strategies with chemical engineering applications, Comput. & Chem. Engrg., 32 (2008), pp. 2903-2913.
[3] M. Beckmann, C. B. McGuire, and C. B. Winsten, Studies in the Economics of Transportation, Yale University Press, New Haven, CT, 1956, ch. 3, pp. 65-79.
[4] P. Belotti, P. Bonami, M. Fischetti, A. Lodi, M. Monaci, A. Nogales-Gómez, and D. Salvagnin, On handling indicator constraints in mixed integer programming, Comput. Optim. Appl., 65 (2016), pp. 545-566. · Zbl 1357.90094
[5] H. I. Calvete, C. Galé, and M.-J. Oliveros, Bilevel model for production-distribution planning solved by using ant colony optimization, Comput. Oper. Res., 38 (2011), p. 320-327. · Zbl 1231.90158
[6] C. D’Ambrosio, A. Frangioni, L. Liberti, and A. Lodi, On interval-subgradient and no-good cuts, Oper. Res. Lett., 38 (2010), pp. 341-345. · Zbl 1202.90238
[7] C. D’Ambrosio, A. Lodi, and S. Martello, Piecewise linear approximation of functions of two variables in MILP models, Oper. Res. Lett., 38 (2010), pp. 39-46. · Zbl 1182.90064
[8] T. Dan, Algorithmic Contributions to Bilevel Location Problems with Queueing and User Equilibrium: Exact and Semi-Exact Approaches, Ph.D. thesis, Université de Montréal, Montréal, Quebec, Canada, 2019.
[9] T. Dan, A. Lodi, and P. Marcotte, Joint location and pricing within a user-optimized environment, EURO J. Comput. Optim., 8 (2020), pp. 61-84, https://doi.org/10.1007/s13675-019-00120-w. · Zbl 1441.90096
[10] T. Dan and P. Marcotte, Competitive facility location with selfish users and queues, Oper. Res., 67 (2019), pp. 479-497. · Zbl 1444.90024
[11] M. Frank and P. Wolfe, An algorithm for quadratic programming, Naval Res. Logist. Quart., 3 (1956), pp. 95-110.
[12] F. Furini and E. Traversi, Hybrid SDP bounding procedure, in Experimental Algorithms, V. Bonifaci, C. Demetrescu, and A. Marchetti-Spaccamela, eds., Springer, Berlin, Heidelberg, 2013, pp. 248-259.
[13] H. Hijazi and L. Liberti, Constraint Qualification Failure in Second-Order Cone Formulations of Unbounded Disjunctions, Tech. report, NICTA, Canberra, ACT, Australia, 2014.
[14] IBM Knowledge Center, Class IloCplex, https://www.ibm.com/support/knowledgecenter/fi/SSSA5P_12.8.0/ilog.odms.cplex.help/refjavacplex/html/ilog/cplex/package-summary.html (accessed 2020-01-10).
[15] R. Jeroslow and J. Lowe, Modelling with integer variables, in Mathematical Programming at Oberwolfach II, B. Korte and K. Ritter, eds., Math. Program. Stud. 22, Springer, Berlin, 1984, pp. 167-184. · Zbl 0554.90081
[16] L. Kleinrock, Theory, Vol. 1, Queueing Systems, Wiley-Interscience, New York, 1975, ch. 3, pp. 102-103. · Zbl 0334.60045
[17] H. L. Lee and M. A. Cohen, A note on the convexity of performance measures of M/M/c queueing systems, J. Appl. Probab., 20 (1983), p. 920-923. · Zbl 0526.60084
[18] J. T. Linderoth and A. Lodi, MILP software, in Wiley Encyclopedia of Operations Research and Management Science, Vol. 5, J. Cochran, ed., John Wiley & Sons, Hoboken, NJ, 2011, pp. 3239-3248.
[19] H. Liu and D. Z. W. Wang, Modeling and solving discrete network design problem with stochastic user equilibrium, J. Adv. Transportation, 50 (2016), pp. 1295-1313.
[20] A. Lodi, Mixed integer programming computation, in 50 Years of Integer Programming 1958-2008, M. Jünger, T. Liebling, D. Naddef, G. Nemhauser, W. Pulleyblank, G. Reinelt, and G. Rinaldi, eds., Springer, Berlin, Heidelberg, 2010, pp. 619-645.
[21] V. Marianov, M. Ríos, and M. J. Icaza, Facility location for market capture when users rank facilities by shorter travel and waiting times, European J. Oper. Res., 191 (2008), pp. 32-44. · Zbl 1146.90457
[22] G. P. McCormick, Computability of global solutions to factorable nonconvex programs. I. Convex underestimating problems, Math. Program., 10 (1976), pp. 146-175. · Zbl 0349.90100
[23] G. Nannicini, G. Sartor, E. Traversi, and R. Wolfler-Calvo, An exact algorithm for robust influence maximization, in Integer Programming and Combinatorial Optimization, A. Lodi and V. Nagarajan, eds., Lecture Notes in Comput. Sci. 11480, Springer, Cham, 2019, pp. 313-326. · Zbl 1436.90094
[24] A. U. Raghunathan, Global optimization of nonlinear network design, SIAM J. Optim., 23 (2013), pp. 268-295, https://doi.org/10.1137/110827387. · Zbl 1270.90036
[25] J. G. Wardrop, Road paper. some theoretical aspects of road traffic research, Proc. Inst. Civil Engineers, 1 (1952), pp. 325-362.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.