zbMATH — the first resource for mathematics

Dwork-type supercongruences through a creative $$q$$-microscope. (English) Zbl 1473.11046
After introducing the unit root $$\omega(z)$$, a $$p$$-adic analytical function shaped as Dirichlet quadratic character, the authors illustrate the congruences $\sum\limits_{k=0}^{(p^r-1)/d} A_k z^k \equiv \omega(z) \sum_{k = 0}^{(p^{r-1}-1)/d} A_k z^{p k} \pmod {p^{mr} \mathbb{Z}_p [[z]]}$ as extension to $$r,m,d \in \mathbb{Z^+}$$ of those found by B. Dwork [Publ. Math., Inst. Hautes Étud. Sci. 37, 27–115 (1969; Zbl 0284.14008)] for the specific case $$m=d=1$$.
Then they clarify that $$f(z) = \sum_{k = 0}^\infty A_k z^k$$ is an arithmetic hypergeometric series and they focus on the truncation, at $$z=1$$, of the following two: $\sum_{k=0}^{\infty} (8k+1) \binom {4k}{2k} {\binom {2k}{k}}^2 \frac {z^k}{2^{8k}3^{2k}},$ $\sum_{k=0}^{\infty} \frac {\left( \frac{1}{2} \right)^3_k}{k!^3} (3k+1) (4z)^k ,$ corresponding to Dwork-type supercongruences ($$m>1$$) here established, respectively for primes p>3 and p>2, via the strategy of creative $$q$$-microscoping.
Supplied in a previous joint paper [Adv. Math. 346, 329–358 (2019; Zbl 1464.11028)], such method is aimed at proving supercongruences for truncated sums of arithmetic hypergeometric evaluations. Beyond $$q$$-congruences and $$q$$-identities successfully used on the same topic by the first author [J. Math. Anal. Appl. 487, Article 124022 (2020; Zbl 1439.11011)], the proof employs the transformation formulas of basic hypergeometric series available in the Encyclopedia of Mathematics and its Applications; namely, the Volume No. 96 [Basic hypergeometric series. 2nd ed. Cambridge: Cambridge University Press (2004; Zbl 1129.33005)].
In addition, this paper establishes several $$q$$-analogues of Dwork-type congruences, some of which partly confirm the conjectural work of H. Swisher [Res. Math. Sci. 2, Paper No. 18, 21 p. (2015; Zbl 1337.33005)], and it provides new similar conjectures too.
Eventually, the authors suggest the investigation of certain Dwork-type $$q$$-congruences, connected to the modular Calabi-Yau threefold studied by S. Ahlgren and K. Ono [Monatsh. Math. 129, No. 3, 177–190 (2000; Zbl 0999.11031)], in order to explore the $$q$$-deformations proposed by P. Scholze [Ann. Fac. Sci. Toulouse, Math. (6) 26, No. 5, 1163–1192 (2017; Zbl 1461.14031)].

MSC:
 11B65 Binomial coefficients; factorials; $$q$$-identities 05A30 $$q$$-calculus and related topics 11A07 Congruences; primitive roots; residue systems 33C05 Classical hypergeometric functions, $${}_2F_1$$ 14J32 Calabi-Yau manifolds (algebro-geometric aspects)
Full Text:
References:
 [1] Ahlgren, S.; Ono, K., Modularity of a certain Calabi-Yau threefold, Monatshefte Math., 129, 3, 177-190 (2000) · Zbl 0999.11031 [2] Dwork, B., p-adic cycles, Publ. Math. Inst. Hautes Études Sci., 37, 27-115 (1969) · Zbl 0284.14008 [3] Gasper, G.; Rahman, M., Basic Hypergeometric Series, Encyclopedia of Mathematics and Its Applications, vol. 96 (2004), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1129.33005 [4] Gorodetsky, O., q-Congruences, with applications to supercongruences and the cyclic sieving phenomenon, Int. J. Number Theory, 15, 1919-1968 (2019) · Zbl 1423.11043 [5] Guillera, J.; Zudilin, W., “Divergent” Ramanujan-type supercongruences, Proc. Am. Math. Soc., 140, 765-777 (2012) · Zbl 1276.11027 [6] Guo, V. J.W., A q-analogue of the (L.2) supercongruence of Van Hamme, J. Math. Anal. Appl., 466, 749-761 (2018) · Zbl 1405.33021 [7] Guo, V. J.W., A q-analogue of a Ramanujan-type supercongruence involving central binomial coefficients, J. Math. Anal. Appl., 458, 590-600 (2018) · Zbl 1373.05025 [8] Guo, V. J.W., q-Analogues of the (E.2) and (F.2) supercongruences of Van Hamme, Ramanujan J., 49, 531-544 (2019) · Zbl 1468.11065 [9] Guo, V. J.W., Proof of a q-congruence conjectured by Tauraso, Int. J. Number Theory, 15, 37-41 (2019) · Zbl 1467.11027 [10] Guo, V. J.W., Common q-analogues of some different supercongruences, Results Math., 74, Article 131 pp. (2019) · Zbl 1414.33016 [11] Guo, V. J.W., Some q-congruences with parameters, Acta Arith., 190, 381-393 (2019) · Zbl 1459.11052 [12] Guo, V. J.W., q-Analogues of two “divergent” Ramanujan-type supercongruences, Ramanujan J., 52, 605-624 (2020) · Zbl 1455.11036 [13] Guo, V. J.W., Proof of a generalization of the (B.2) supercongruence of Van Hamme through a q-microscope, Adv. Appl. Math., 116, Article 102016 pp. (2020) · Zbl 1468.11005 [14] Guo, V. J.W., q-Supercongruences modulo the fourth power of a cyclotomic polynomial via creative microscoping, Adv. Appl. Math., 120, Article 102078 pp. (2020) · Zbl 1456.11024 [15] Guo, V. J.W., Proof of some q-supercongruences modulo the fourth power of a cyclotomic polynomial, Results Math., 75, Article 77 pp. (2020) · Zbl 1458.33009 [16] Guo, V. J.W., A q-analogue of the (A.2) supercongruence of Van Hamme for primes $$p \equiv 1(\operatorname{mod} 4)$$, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., 114, Article 123 pp. (2020) [17] Guo, V. J.W., q-Analogues of Dwork-type supercongruences, J. Math. Anal. Appl., 487, Article 124022 pp. (2020) · Zbl 1439.11011 [18] Guo, V. J.W.; Pan, H.; Zhang, Y., The Rodriguez-Villegas type congruences for truncated q-hypergeometric functions, J. Number Theory, 174, 358-368 (2017) · Zbl 1387.11018 [19] Guo, V. J.W.; Schlosser, M. J., A new family of q-supercongruences modulo the fourth power of a cyclotomic polynomial, Results Math., 75, Article 155 pp. (2020) · Zbl 1469.11032 [20] Guo, V. J.W.; Schlosser, M. J., Some q-supercongruences from transformation formulas for basic hypergeometric series, Constr. Approx. (2020), in press [21] Guo, V. J.W.; Schlosser, M. J., A family of q-hypergeometric congruences modulo the fourth power of a cyclotomic polynomial, Isr. J. Math. (2020), in press · Zbl 1469.11032 [22] Guo, V. J.W.; Zeng, J., Some q-analogues of supercongruences of Rodriguez-Villegas, J. Number Theory, 145, 301-316 (2014) · Zbl 1315.11015 [23] Guo, V. J.W.; Zudilin, W., A q-microscope for supercongruences, Adv. Math., 346, 329-358 (2019) · Zbl 1464.11028 [24] Guo, V. J.W.; Zudilin, W., On a q-deformation of modular forms, J. Math. Anal. Appl., 475, 1636-1646 (2019) · Zbl 1445.11014 [25] Guo, V. J.W.; Zudilin, W., A common q-analogue of two supercongruences, Results Math., 75, Article 46 pp. (2020) · Zbl 1439.33007 [26] Kilbourn, T., An extension of the Apéry number supercongruence, Acta Arith., 123, 4, 335-348 (2006) · Zbl 1170.11008 [27] Li, L.; Wang, S.-D., Proof of a q-supercongruence conjectured by Guo and Schlosser, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., 114, Article 190 pp. (2020) · Zbl 07258316 [28] Liu, J.-C., Congruences for truncated hypergeometric series $${}_2F_1$$, Bull. Aust. Math. Soc., 96, 14-23 (2017) · Zbl 1425.11004 [29] Liu, J.-C.; Petrov, F., Congruences on sums of q-binomial coefficients, Adv. Appl. Math., 116, Article 102003 pp. (2020) · Zbl 1468.11068 [30] Long, L.; Tu, F.-T.; Yui, N.; Zudilin, W., Supercongruences for rigid hypergeometric Calabi-Yau threefolds (2017), preprint [31] Mortenson, E., A supercongruence conjecture of Rodriguez-Villegas for a certain truncated hypergeometric function, J. Number Theory, 99, 139-147 (2003) · Zbl 1074.11045 [32] Mortenson, E., Supercongruences between truncated $${}_2F_1$$ hypergeometric functions and their Gaussian analogs, Trans. Am. Math. Soc., 355, 987-1007 (2003) · Zbl 1074.11044 [33] Mellit, A.; Vlasenko, M., Dwork’s congruences for the constant terms of powers of a Laurent polynomial, Int. J. Number Theory, 12, 313-321 (2016) · Zbl 1408.11114 [34] Ni, H.-X., A q-Dwork-type generalization of Rodriguez-Villegas’ supercongruences (2020), preprint [35] Ni, H.-X.; Pan, H., On a conjectured q-congruence of Guo and Zeng, Int. J. Number Theory, 14, 1699-1707 (2018) · Zbl 1428.11041 [36] Roberts, D. P.; Rodriguez-Villegas, F., Hypergeometric supercongruences, (2017 MATRIX Annals. 2017 MATRIX Annals, MATRIX Book Ser., vol. 2 (2019), Springer: Springer Cham), 435-439 · Zbl 1443.11022 [37] Rodriguez-Villegas, F., Hypergeometric families of Calabi-Yau manifolds, (Calabi-Yau Varieties and Mirror Symmetry. Calabi-Yau Varieties and Mirror Symmetry, Toronto, ON, 2001. Calabi-Yau Varieties and Mirror Symmetry. Calabi-Yau Varieties and Mirror Symmetry, Toronto, ON, 2001, Fields Inst. Commun., vol. 38 (2003), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 223-231 · Zbl 1062.11038 [38] Scholze, P., Canonical q-deformations in arithmetic geometry, Ann. Fac. Sci. Toulouse Math. (6), 26, 5, 1163-1192 (2017) · Zbl 1461.14031 [39] Straub, A., Supercongruences for polynomial analogs of the Apéry numbers, Proc. Am. Math. Soc., 147, 1023-1036 (2019) · Zbl 1442.11039 [40] Sun, Z.-H., Congruences concerning Legendre polynomials, Proc. Am. Math. Soc., 139, 1915-1929 (2011) · Zbl 1225.11006 [41] Sun, Z.-H., Generalized Legendre polynomials and related supercongruences, J. Number Theory, 143, 293-319 (2014) · Zbl 1353.11005 [42] Sun, Z.-W., Super congruences and Euler numbers, Sci. China Math., 54, 2509-2535 (2011) · Zbl 1256.11011 [43] Sun, Z.-W., Open conjectures on congruences, Nanjing Univ. J. Math. Biquarterly, 36, 1, 1-99 (2019) · Zbl 1449.11001 [44] Swisher, H., On the supercongruence conjectures of van Hamme, Res. Math. Sci., 2, Article 18 pp. (2015) · Zbl 1337.33005 [45] Tauraso, R., Some q-analogs of congruences for central binomial sums, Colloq. Math., 133, 133-143 (2013) · Zbl 1339.11003 [46] Van Hamme, L., Proof of a conjecture of Beukers on Apéry numbers, (Proceedings of the Conference on p-Adic Analysis. Proceedings of the Conference on p-Adic Analysis, Houthalen, 1987 (1986), Vrije Univ. Brussel: Vrije Univ. Brussel Brussels), 189-195 · Zbl 0634.10004 [47] Van Hamme, L., Some conjectures concerning partial sums of generalized hypergeometric series, (p-Adic Functional Analysis. p-Adic Functional Analysis, Nijmegen, 1996. p-Adic Functional Analysis. p-Adic Functional Analysis, Nijmegen, 1996, Lecture Notes in Pure and Appl. Math., vol. 192 (1997), Dekker: Dekker New York), 223-236 · Zbl 0895.11051 [48] Wang, X.; Yue, M., A q-analogue of a Dwork-type supercongruence, Bull. Aust. Math. Soc. (2020), in press [49] Zhang, Y.; Pan, H., On the Atkin and Swinnerton-Dyer type congruences for some truncated hypergeometric $${}_1F_0$$ series, Acta Arith. (2020), in press [50] Zudilin, W., Ramanujan-type supercongruences, J. Number Theory, 129, 1848-1857 (2009) · Zbl 1231.11147 [51] Zudilin, W., Congruences for q-binomial coefficients, Ann. Comb., 23, 1123-1135 (2019) · Zbl 1431.11032 [52] Zudilin, W., The method of creative microscoping, (RIMS Kôkyûroku, vol. 2162 (July 2020), Kyoto Univ.), 227-234
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.