zbMATH — the first resource for mathematics

Mixed variational one-dimensional dynamic thermo-viscoplasticity for wave propagation. (English) Zbl 07305829
Summary: In view of recent developments in advanced manufacturing and nanomaterial technologies, which have enabled realization of novel material architectures at small-scale, a mixed variational temperature-dependent rate-dependent thermo-viscoplastic continuum element is proposed and developed for elastic, plastic, and thermal wave propagation problems. The variational scheme is based on a Hamiltonian approach, while for the temporal and spatial discretization scheme a discrete calculus of variations approach is adopted. Within this framework, an exponential temperature dependence for material properties and second sound effects is included. The developed framework sets the foundations that can lead to new class of temperature dependent models for capturing thermoplastic behavior and wave propagation of different materials. The robustness of the proposed variational approach, and aspects of coupled dynamic temperature-dependent thermoplastic response are demonstrated through several case studies. Applications include elastic, plastic, and thermal wave propagation and reflection in semi-infinite and finite length space at small temporal scales.
74 Mechanics of deformable solids
Full Text: DOI
[1] Anthony, K. H., Hamilton’s action principle and thermodynamics of irreversible processes – unifying procedure for reversible and irreversible processes, J. Non-Newtonian Fluid Mech., 96, 1-2, 291-339 (2001) · Zbl 1060.82506
[2] Anthony, K. H.; Azirhi, A., Dislocation dynamics by means of Lagrange formalism of irreversible processes – complex fields and deformation processes, Int. J. Eng. Sci., 33, 15, 2137-2148 (1995) · Zbl 0899.73030
[3] Apostolakis, G.; Dargush, G. F., Mixed Lagrangian formalism for temperature-dependent dynamic thermoplasticity, J. Eng. Mech., 143, 9, Article 04017094 pp. (2017), 1:10
[4] Apostolakis, G.; Dargush, G. F., Mixed variational principles for dynamic response of thermoelastic and poroelastic continua, Int. J. Solid Struct., 50, 5, 642-650 (2013)
[5] Apostolakis, G.; Dargush, G. F., Variational methods in irreversible thermoelasticity: theoretical developments and minimum principles for the discrete form, Acta Mech., 224, 9, 2065-2088 (2013) · Zbl 1398.74062
[6] Apostolakis, G.; Reinhorn, A. M.; Dargush, G. F.; Lavan, O.; Mettupalayan, S., Analysis of Collapse of Irregular Tall Structures Using Mixed Lagrangian Formulation, Book Chapter in Seismic Behavior and Design of Irregular and Complex Civil Structures, 235-250 (2013), Springer Verlag
[7] Apostolakis, G.; Dargush, G. F., Mixed Lagrangian formulation for linear thermoelastic response of structures, J. Eng. Mech., 138, 5, 508-518 (2012)
[8] Apostolakis, G.; Dargush, G. F.; Filiatrault, A., Computational framework for automated seismic design of steel frames with self-centering connections, J. Comput. Civ. Eng., 28, 2, 170-181 (2014)
[9] Apostolakis, G., A Lagrangian Approach for Thermomechanics towards Damage and Deterioration of Structures (2010), Ph.D. Dissertation, University at Buffalo, The State University of New York: Ph.D. Dissertation, University at Buffalo, The State University of New York Buffalo, NY
[10] Beris, A. N.; Edwards, B. J., Thermodynamics of Flowing Systems with Internal Microstructure (1994), Oxford University Press: Oxford University Press New York
[11] Biot, M. A., Theory of stress-strain relations in anisotropic viscoelasticity and relaxation phenomena, J. Appl. Phys., 25, 11, 1385-1391 (1954) · Zbl 0057.19103
[12] Biot, M. A., Variational principles in irreversible thermodynamics with application to viscoelasticity, Phys. Rev., 97, 6, 1463-1469 (1955) · Zbl 0065.42003
[13] Biot, M. A., Thermoelasticity and irreversible thermodynamics, J. Appl. Phys., 27, 3, 240-253 (1956) · Zbl 0071.41204
[14] Biot, M. A., Generalized theory of acoustic propagation in porous dissipative media, J. Acoust. Soc. Am., 34, 9, 1254-1264 (1962)
[15] Cadzow, J. A., Discrete calculus of variations, Int. J. Contr., 11, 3, 393-407 (1970) · Zbl 0193.07601
[16] Canadija, M.; Mosler, J., On the thermomechanical coupling in finite strain plasticity theory with non-linear kinematic hardening by means of incremental energy minimization, Int. J. Solid Struct., 48, 7-8, 1120-1129 (2011) · Zbl 1236.74032
[17] Chaboche, J. L., A review of some plasticity and viscoelasticity constitutive theories, Int. J. Plast., 24, 10, 1642-1693 (2008) · Zbl 1142.74012
[18] Chaboche, J. L.; Gaubert, A.; Kanoute, P.; Longuet, A.; Azzouz, F.; Maziere, M., Viscoplastic constitutive equations of combustion chamber materials including cyclic hardening and dynamic strain aging, Int. J. Plast., 46, 1-22 (2013)
[19] Chester, M., Second sound in solids, Phys. Rev., 131, 5, 2013-2015 (1963)
[20] Chopra, M. B.; Dargush, G. F., Development of BEM for thermoplasticity, Int. J. Solid Struct., 31, 12-13, 1635-1656 (1994) · Zbl 0946.74589
[21] Dargush, G. F.; Apostolakis, G.; Darrall, B. T.; Kim, J., Mixed convolved action variational principles in heat diffusion, Int. J. Heat Mass Tran., 100, 790-799 (2016)
[22] Dargush, G. F.; Darrall, B. T.; Kim, J.; Apostolakis, G., Mixed convolved action principles in linear continuum dynamics, Acta Mech., 226, 12, 4111-4137 (2015) · Zbl 1336.74013
[23] Freed, A. D.; Chaboche, J. L.; Walker, K. P., A viscoplastic theory with thermodynamic considerations, Acta Mech., 90, 1-4, 155-174 (1991) · Zbl 0749.73032
[24] Grmela, M., Bracket formulation of dissipative fluid mechanics equations, Phys. Lett., 102A, 8, 355-358 (1984)
[25] Grmela, M.; Ottinger, H. C., Dynamics and thermodynamics of complex fluids. I: development of a general formalism, Phys. Rev. E., 56, 6, 6620-6632 (1997)
[26] Jang, D.; Meza, L. R.; Zelhofer, A. J.; Greer, F.; Greer, J. R., Fabrication and deformation of three-dimensional hollow ceramic nanostructures, Nat. Mater., 12, 893-898 (2013)
[27] Kane, C.; Marsden, J. E.; Ortiz, M., Symplectic-energy-momentum preserving variational integrators, J. Math. Phys., 40, 7, 3353-3371 (1999) · Zbl 0983.70014
[28] Kane, C.; Marsden, J. E.; Ortiz, M.; West, M., Variational integrators and the Newmark algorithm for conservative and dissipative mechanical systems”, Int. J. Numer. Methods Eng., 49, 10, 1295-1325 (2000) · Zbl 0969.70004
[29] Kaufman, A. N., Dissipative Hamiltonian systems: a unifying principle, Phys. Lett., 100A, 8, 419-422 (1984)
[30] Kolsky, H., Stress Waves in Solids (1963), Dover Publications Inc.: Dover Publications Inc. New York, NY · Zbl 0109.43303
[31] Lemaitre, J.; Chaboche, J. L., Mechanics of Solid Materials (1990), Cambridge University Press: Cambridge University Press Cambridge, New York
[32] Marsden, J. E.; West, M., Discrete mechanics and variational integrators, Acta Numer., 10, 357-514 (2001) · Zbl 1123.37327
[33] MATLAB, Computer Software (2017), The MathWorks Inc.: The MathWorks Inc. Natick, MA
[34] Maugin, G. A., The Thermomechanics of Plasticity and Fracture (1992), Cambridge University Press: Cambridge University Press Cambridge, UK · Zbl 0753.73001
[35] Maugin, G. A.; Kalpakides, V. K., A Hamiltonian formulation for elasticity and thermoelasticity, J. Phys. A Math. Gen., 35, 50, 10775-10788 (2002) · Zbl 1168.74311
[36] Maxwell, J. C., On the dynamical theory of gases, Phil. Trans. Roy. Soc. Lond., 157, 49-88 (1867)
[37] McDowell, D. L., A nonlinear kinematic hardening theory for cyclic thermoplasticity and thermoviscoplasticity, Int. J. Plast., 8, 6, 695-728 (1992) · Zbl 0774.73027
[38] Meza, L. R.; Zelhofer, A. J.; Clarke, N.; Mateos, A. J.; Kochmann, D. M.; Greer, J. R., Resilient 3D hierarchical architected metamaterials, Proc. Natl. Acad. Sci. U.S.A., 112, 37, 11502-11507 (2015)
[39] Meza, L. R.; Phlipot, G.; Portela, C. M.; Maggi, A.; Montemayor, L. C.; Comella, A.; Kochmann, D. M.; Greer, J. R., Reexamining the mechanical property space of three-dimensional lattice architectures, Acta Mater., 140, 424-432 (2017)
[40] Montemayor, L. C.; Meza, L. R.; Greer, J. R., Design and fabrication of hollow rigid nanolattices via two-photon lithography, Adv. Eng. Mater., 16, 2, 184-189 (2014)
[41] Morrison, P. J., Bracket formulation for irreversible classical fields, Phys. Lett., 100A, 8, 423-427 (1984)
[42] Mroz, Z.; Raniecki, B., Variational principles in uncoupled thermoplasticity, Int. J. Eng. Sci., 11, 11, 1133-1141 (1973) · Zbl 0269.73007
[43] Mroz, Z.; Raniecki, B., A note on variational principles in coupled thermoplasticity, Acad. Polon. Sci. Bull. Ser. Sci. Tech., 23, 3, 133-139 (1975) · Zbl 0313.73032
[44] Ottinger, H. C.; Grmela, M., Dynamics and thermodynamics of complex fluids. II: illustrations of a general formalism, Phys. Rev. E., 56, 6, 6633-6655 (1997)
[45] Prevost, J. H.; Tao, D., Finite element analysis of dynamic coupled thermoelasticity problems with relaxation times, J. Appl. Mech. (ASME), 50, 4a, 817-822 (1983) · Zbl 0527.73010
[46] Rayleigh, J. W.S., The Theory of Sound. I & II (1877), Dover Publications: Dover Publications New York, reprint in 1945
[47] Rosakis, P.; Rosakis, A. J.; Ravichandran, G.; Hodowany, J., A thermodynamic internal variable model for the partition of plastic work into heat and stored energy for metals, J. Mech. Phys. Solid., 48, 3, 581-607 (2000) · Zbl 1005.74004
[48] Schaedler, T. A.; Jacobsen, A. J.; Torrents, A.; Sorensen, A. E.; Lian, J.; Greer, J. R.; Valdevit, L.; Carter, W. B., Ultralight metallic microlattices, Science, 334, 6058, 962-965 (2011)
[49] Sievers, B.; Anthony, K. H., Nonlocal Lagrange formalism in the thermodynamics of irreversible processes: variational procedures for kinetic equations, Physica A, 225, 1, 89-128 (1996)
[50] Simo, J. C.; Miehe, C., Associative coupled thermoplasticity at finite strains: formulation, numerical analysis and implementation, Comput, Methods Appl. Mech. Eng., 98, 1, 41-104 (1992) · Zbl 0764.73088
[51] Sivaselvan, M. V.; Lavan, O.; Dargush, G. F.; Kurino, H.; Hyodo, Y.; Fukuda, R.; Sato, K.; Apostolakis, G.; Reinhorn, A. M., Numerical collapse simulation of large-scale structural systems using an optimization-based algorithm, Earthq. Eng. Struct. Dynam., 38, 5, 655-677 (2009)
[52] Sivaselvan, M. V.; Reinhorn, A. M., Lagrangian approach to structural collapse simulation, J. Eng. Mech., 132, 8, 795-805 (2006)
[53] Stainier, L., Consistent incremental approximation of dissipation pseudo-potentials in the variational formulation of thermo-mechanical constitutive updates, Mech. Res. Commun., 38, 4, 315-319 (2011) · Zbl 1272.74142
[54] Sternberg, E.; Chakravorty, J. G., On inertia effects in a transient thermoelastic problem, J. Appl. Mech. (ASME), 26, 503-509 (1959)
[55] Vyatskikh, A.; Delalande, S.; Kudo, A.; Zhang, X.; Portela, C. M.; Greer, J. R., Additive manufacturing of 3D nano-architected metals, Nat. Commun., 9, 593 (2018)
[56] Wood, E. R.; Phillips, A., On the theory of plastic wave propagation in a bar, J. Mech. Phys. Solid., 15, 4, 241-254 (1967)
[57] Yang, Q.; Stainier, L.; Ortiz, M., A variational formulation of the coupled thermo-mechanical boundary-value problem for general dissipative solids, J. Mech. Phys. Solid., 54, 2, 401-424 (2006) · Zbl 1120.74367
[58] Zhang, J. X.; Jiang, Y. Y., Constitutive modeling of cyclic plasticity deformation of a pure polycrystalline copper, Int. J. Plast., 24, 10, 1890-1915 (2008) · Zbl 1144.74005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.